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.. 1 ABSTRACT

In structural engineering it is imperative to design each system

.tto survive the inputs anticipated over the design life of the

structure. Strong motion inputs cause systems to execute nonlinear

responses, and during the strong motion responses, structures

accumulate damage. Therefore, the capability to model nonlinear

responses and to assess the damage level in a structure is essential

for optimal design.

Techniques for the diagnosis of damage in inelastic structures

. ,! have been developed. The dissipated energy in mechanical systems is

-. taken as a measure of damage accumulation. Two models for the

simulation of damaged structural response have been developed. Both

the single-degree-of-freedom and multi-degree-of-freedom systems 'were

included in the analysis. The objective of this study is to use these

models'to estimate the amount of energy dissipated due to a strong

motion input.

The results show that structural damage can be predicted, even in

the presence of measurement noise.
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CHAPTER 1

p INTRODUCTION

. .1.0 Introduction

When a structure is excited by an external force, it executes a
. response determined by the characteristics of both the input and the

structure. One could predict the exact response of a structure, char-

acterized by its geometry and its mechanical properties, if he could
predict inputs exactly; if he had a perfect model for the structure;

and if the mathematical computations were correct. However, since

inputs are random, one cannot perfectly characterize complex struc-

tures, and since mathematical models are not perfect, one can only

estimate the response of a structure.

In structural analysis it is necessary to assess the response of a

-.: structure to dynamic loads, such as blasts and earthquakes. This
procedure, of course, requires the use of a dynamic model which will

permit accurate prediction of the response of a structure. These

structural models are generally chosen to fit experimental data-and to

simplify mathemtical computations.
Most existing structures were designed based on a static model,

and although dynamic properties may be considered in their design, the

design parameters may be inadequate to predict the response to dynamic

load correctly. Considerable work has been performed on identifying

the parameters of mathematical models from dynamic experimental data,
and various approaches have been proposed for predicting system param-

eters based on experimental data.

These identified parameters can be used to predict the dynamic

U response of a structure to a different excitation than that used to

test it. The identified parameters also can be used to calculate the

energy dissipation in a hysteretic structure caused by strong

excitation.

.. .
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The energy dissipated by a structure during a strong motion
response is an indication of the structural damage. It is important to

predict how much damage occurs in a structure due to strong motion
because the level of damage is related to the likelihood of structural
failure. When damage does occur, it can appear in different forms,

such as cracks, permanent deformation, or change in characteristic

frequency.

In practice, it may be difficult to assess the damage extent and
location in a complex structure after an extreme excitation. For exam-

ple, in a nuclear power plant or buried protection structure, it may be

difficult to assess damage. This difficulty may arise due to the num-

ber of elements in a structure or the scale of individual structure

members.

A certain degree of damage is usually unavoidable when structures

§ ~are subjected to strong motion; therefore, estimation of structural

damage is necessary for proper design. At present, the exact criteria

a useful in judging the failure of a structural system are not avail-

able. It is Rnown that some of the measures of structural response
* ..~ related to the occurrence of failure are peak response, energy dissipa-

5' tion, plastic deformation, etc. In fact, the failure criteria of any

q practical material are a complicated function of many measures of

response.

In this study models are established for single-degree-of-freedom
(SDF) and multi-degree-of-freedom (MDF) damageable structures. Signals

that can be used to simulate measured data are generated. These are

* -used to identify the parameters of the structural models. Finally,

damage measures are 'computed for the simulated systems and their mathe-
. : matical models.

1.1 Literature Review

The present investigation establishes mathematical models for the
-, simulation of damaged structural response. The mathematical models are

5.
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3

proposed, then signals which can be used to simulate the input and

response of damaged structures are generated. These signals are used

to identify the model parameters. There are two broad areas in the

literature that are concerned with concepts important in this study.

These are (1) mathematical models for damaged structural systems, and

(2) the identification of structural system parameters. Some papers

from the literature in both these areas are briefly discussed below.

Part of the energy dissipated by a structure is dissipated due to

hysteretic behavior of the structural material. The equation governing

the hysteretic response of a lumped mass system is a second-order,
.1 :. nonlinear, ordinary differential equation with history-dependent stiff-

ness term. Two models which may approximate the nonlinear system will

be proposed in this study. These are

1. High-order equivalent linear system;

• .s 2. Time-varying parameter linear system.

, The first model considered in this investigation is a high-order

equivalent linear system. It is assumed that the .nonlinear hysteretic

system is approximately governed by a high-order equivalent system.

-. .- This model is motivated by studies summarized in the literature. For

example, Lutes and Hseih [1] used a third-order linear system to

approximate a SDF oscillator with bilinear hysteretic yielding behav-

ior, excited by stationary white noise. In the linear system, certain

.7; parameters were chosen so that the root mean square displacement and

* velocity matched empirical values for the nonlinear system. They

9 ,.showed that the third-order system gives a better overall prediction of

response buildup than does either the linear SDF system or a two-mode

system.

Lutes (2] used a different type of equivalent linear system to

approximate the nonlinear system. All the methods Lutes considered

defined the equivalence either in terms of response displacement level,

velocity level, frequency, or a combination of these. He found that

w4
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4' a particular equivalent linear system can generally only be expected

! to match a limited number of response statistics of a particular non-

-, linear system with a particular type of excitation.

Wen [3] and Wen and Baber [5, 6] have used the equivalent lineari-
zation method to approximately represent the response of a hysteretic

SDF system. They showed that the third order, linear, differential

equation provided a satisfactory representation of the inelastic,

hysteretic systems. This closed form linearization is relatively

S:.simple to formulate which allows ready extension to multi-degree-of-

freedom (MDF) systems. They showed that the equivalent linearization

method gives satisfactory results at all response levels for response

analysis of MDF deteriorating or non-deteriorating systems under random

excitation.

Another study by Wafa [7] demonstrated that the peak response for

an hysteretic SDF system excited by random inputs is closely predicted

by a third order, linear equivalent system. Recent work [8] has also

shown that the high-order linear equivalent model provides a good

approximation to the hysteretic system when the energy dissipated and

frequency shift are concerns. Significantly, the results established

that the parameters of a higher order system can be identified by using

qa frequency domain method even when noise is present both in the

forcing and response signals. In contrast, the time domain approach

yields poor results in the presence of noise. Because of the frequency

domain's preferable application, it will be used to do the most

analysis.

The second model is motivated by the fact that structures may

exhibit time-variant nonlinear response to strong motion. This

Simplies that structure deterioration was in progress during the large

amplitude motion. Such a phenomenon has been recognized and studied in

the past. For example, Udwadia and Trifunac [9] and lemura and

Jennings [10] carried out an analysis to characterize such behavior in

I °.
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5

terms of a quasi -time-vari ant linear formulation based on the data

obtained from the San Fernando earthquake of February 9, 1971.

In another study Townsend and Hanson [li) demonstrate time-varying
hysteretic loops by the experimental test of reinforced concrete beam-

column and T-shaped specimens under different loading conditions. In

addition, Uzumeri [12] has also shown the same behavior for an experi-

mental study of cast-in-place reinforced concrete beam-column joints
subjected to simulated seismic loading.

Based on the above referenced investigations involving time-

varying parameters systems, we anticipate that the time-varying param-

eter model will provide a good representation of a hysteretic system.

Many papers in the literature address the problem of damage

assessment; however, few of these treat the mathematical quantification

of damage measures. In the following, some papers which discuss damage

analysis in both quantitative and non-quantitative ways are discussed.

To assess structural damage, it is necessary to first define and

quantify the damage. Yao [13] has examined various definitions of

* structural damage and reviewed available methods for damage assess-

ment. In 1971, Wiggins and Moran [14) developed a procedure for grad-

* ing existing buildings in Long Beach, California. Damage is assessed on

a point basis, and a total of up to 180 points is assigned to each

structure according to the evaluation of structural components of five

types. In 1975, Culver et al [15) proposed the field evaluation method

(FEM) which is applicable even when building plans are unavailable. In

1980, Bresler et al [16) described their structural and fire evaluation

model, which was developed to provide a broad overview of potential
safety problems for more than 10,000 buildings for a government agency

in the United States. Recently, Ishizuka, Fu, and Yao [17, 18, 19)

.1 suggested a rule-based damage assessment system called SPERIL Version
I. All these systems are primarily based on professional experience

and engineering Judgment in the decision making process.

. ,
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A more mathematical quantification of damage in structures has
m been used by Ang, and Wen [20]. They used the hysteretic energy

absorbed and the maximum structural distortion as the function of

structural damage. Others who published in this area are Rudd, Yang
and Manning [21], Yao [22], Toussi and Yao [23, 24], Chen and Yao [25]

qand Yao, Toussi, and Sozen [26].

An important aspect of the present study is the method used to

identify the parameters of the damaged structure. The literature on
structural identification, in general, is very broad. A few of the

papers closely related to the present investigation are reviewed here.

The historical development of research in the area of system

identification is summarized in the works of Astrom and Eykhoff [27],

j Bekey [28], Bowles and Straeter [29] and Collins, Young, and Keifling

[30]. Many survey papers have been written. For example, Collings, et

. 1' al [30], Sage [31], Rodeman and Yao [32), Chen [33], Hart and Yao [34],
Ting, Chen, and Yao [35] and Llu and Yao [36] present surveys of struc-
tural identification.

The potential for change in structural characteristics due to the

. accumulation of damage exists and can be investigated through observa-

tion of structural parameters. Signature analysis technqlues have been

used to predict cracking in bridges by Cole [37, 38].

One important area in system identification permits the analyst to

.- characterize system modes. An early paper by Kennedy and Pancu [39]
shows how model parameters can be obtained from a vector representation

' "of the steady-state response In the complex plane. Later papers in the
same area were written by Bert [40), Bert and Clary [41], Smith [45],

and Trail-Nash [46]. Some of the difficulties encountered in applying

the techniques developed in the above papers are described by Nord

[47].

d .
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The least squares approach to the identification of system param-

1 eters has been developed in many studies, and is applied in both the
time and frequency domains. (This technique is used in the present

* study.) Some papers that have been written on the subject of least

squares parameter estimation are those of Distefano and Rath [48, 49],
-Flanelly and Berman [50], Hart and Yao [34], Ibanez [51], Ibrahim

. [53-58], Milne [59], Raggett, Rodeman, and Yao [32], Ting, Chen, and

Yao [35], Udwadia and Shaw [61], and Wells [62]. Brieman [63] shows
. -that for a linear time invariant system, the least square prediction is

optimal. The technique for using the least squares parameter identifi-

*,** cation in the frequency domain was presented by Ibanez [51, 52]. Wang,
Paez, and Ju [8, 66, 67] found that frequency domain approach is well

suited to the identification of parameters for high order linear models

and time varying linear models.

"-" The effects caused by measurement noise can be important in the

identification of structural system parameters. Kandianis [68] consid-

ered that effect for linear structural systems. His theoretical devel-

opment considered white noise random input. The studies by Wang, Paez,
and Ju [8, 66, 67] show that the parameters of higher order linear and

time varying linear models can be accurately predicted even in the

presence of noise.

1.2 Objective

The determination of the system parameters from suitable experi-

mental observations is a fundamental problem in engineering. Obtaining
a good representation of a system requires all the proper information,

such as well measured data and a suitable model.

The objective of this study is to justify two possible models to

*characterize the behavior of a system. The relative merits for each

model are discussed. Extensive numerical experimentation using simu-

lated data is also presented in order to investigate their feasibility

and accuracy. This study will demonstrate how well the system param-

eters can be identified with and without noise in the measurements.

". 2-

*. . . . ° ° * ** * * * *
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Once the parameters are known, the energy dissipated by the system can

be computed. Based on the computed results, one can compare how well
-. the models performed for a given set of data. The ultimate goal of

this study is to establish structural models useful for other purposes,

- ?such as prediction, design, control, and damage assessment.

The present research has been aimed at the analysis of damage

accumulation in concrete structures. It is assumed that when a con-

crete structure dissipates energy, it accumulates damage. To justify
•- this assumption some physical experiments have been performed. Specif-

ically, concrete cylinders have been subjected to cyclic loading. The

energy dissipated in each cylinder was measured and the level of resid-

ual strength in each cylinder was determined after the load cycling was

completed. The residual strength was plotted versus energy dissipated.

When the reduction in strength is taken as a measure of damage, this

plot reveals the damage caused by energy dissipation.

a'.

a°.%

,' "q%

a, %
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CHAPTER 2

HIGH ORDER EQUIVALENT LINEARIZATION

" ,2.1 Model

* The differential equation governing the response of a

- single-degree-of-freedom (SDF) system is

m 2 + u= f (2-1)

where m is the mass of the structure, f is the forcing function,

. "z is the displacement response, dots denote differentiation with

respect to time, and u is the restoring force of the structure.

Equation (2-1) can be used to model the actual system in which u

* can be a very complicated function. In the present study, t'-

hysteretic restoring force, u, is modeled by using the equation

" i u(i) = cM+ 1 + z (2-2)

where the cj, J = 0, 1, ..., M+1 are the constants governing
the system restoring force characteristics, where u(J) denotes

the jth time derivative of u, and M is a constant denoting the

order of approximation provided by the linear system. The reason

for using this model to represent the hysteretics system is that

it displays a hysteretic character that can be made to match the

character of an inelastic structure.

... Combine Equations 2-1 and 2-2 in the following way. Solve
Equation 2-1 for u, then take derivatives of the resulting

4 ~expression. Use these in Equation 2-2; the result is

' .M - z + cM + : aj (f (J) + mz(J+2 ) )c-. co: -- -m (2-3)

i-i

14
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where f(3) is the jth derivative of f, and ztj+2 ) is the (j+2)th

U Iderivative of z. To simplify the identification procedure,

Equation 2-3 was divided by co. This particular arrangement is

chosen since co should never be 0 for the systems under

consideration.

Consider the case where M is equal to 0. The model in

Equations 2.1 and 2.2 becomer

my + + 1  z f (2-4)
co CO

This is simply the second-order linear differential equation

. governing the SDF system. However, when the response of the

actual system is linear and damping is viscous, the model of

Equation (2-4) represents the actual system. The restoring force

function for this system is u = (cl/co)z + (1/co)z. This model

displays the hysteretic behavior as shown in Figure (2-1).

I When the constant M is chosen as 1 in equation 2-2, the

model becomes

mY + u = f

SCOU + ClI C2Z + Z (2-5)

! ", Combining these equations results in

+ my" + c2 +_ Z f + CI (2-6)
CO co c f C

The parameters of the system in Equation (2-6) can be chosen so

that the model represents the hysteretic system as well as

possible.

For example, Figure (2-2) shows the hysteretic properties

for an SDF system by plotting the restoring force versus dis-

placement. The parameters for the system and the forcing input

L



7---77

Ow

4J
I.

40

-
P" ~01

4.)

um S-

dim-



12

*4J3

41

CA

UU

0-0

41

0- 0
'4-

P44,

in %a
Cl! a! 5

N0



13

are given in Figures (2-2). This study will consider both the

equations (2-4) and (2-6).

The parameters can be identified by using the least-square

identification criterion. Since most observed data include a

certain percentage of noise, the frequency domain approach will

R .- be used to perform the parameter identification.

It is anticipated that as the order, M, of the model in

Equation 2-2 is increased, the response of a hysteretic system

can be matched with increasing accuracy. However, for practical

reasons involving estimation accuracy for system parameters, very

high order linear system models cannot be used to simulate

hysteretic system behavior.

- Before considering the problem of parameter estimation for

the system of Equation 2-2, note that we anticipate calculating a

set of parameters with values in a specific range. For example,

when M = 0 and Equation 2-4 is the model for system response, we
* anticipate finding values 1/co > 0 and cl/co > 0 (i.e., co > 0

and cl > 0. These values guarantee that the model has positive
stiffness and damping, as we know the real system must. When

M = 1 and Equation 2-5 models the system response, we anticipate

finding values co > 0, cl > 0, and c2 > 0. These values guaran-

tee that the model response will be stable.

' The energy dissipted by the systems described in this sec-

tion can be computed using Equation 2-1 or 2-2. In the terms of

Equation 2-1, the energy dissipated by a system is

z(T)

ED f u dz (2-7)

z(O)

where z(O) is the system displacement at time 0, z(T) is the

system displacement at time T, and T is the time through which7 the energy computation is executed. This formula provides the

S-area enclosed in the hysteresis loops generated by the system
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response. For example, Equation 2-7 could be used to compute the

area enclosed by the hysteresis loop of Figure 2-1. This equa-

tion can be transformed into terms more convenient for computa-

- tion. Note that the integral of Equation 2-7 is written in terms
of the displacement variable z. The variable of integration can
be transformed to a time variable yielding the following

expression.

T

ED f u 2 dt (2-7a)

Finally, Equation 2-1 can be used to obtain

T

ED f (f -m) dt (2-7b)
,D 0

0

S When the input and response for an SDF system are measured,

Equation 2-7b can be used to directly compute the energy dissi-

pated by a system. When the response is computed, for example by

solving Equations 2-5, then the input and system parameters are

P used to find z and its derivatives. The input, f, and computed

response, z, are used in Equation 2-7b to determine the energy

dissipated.

Numerical examples where we compute the parameters of linear

systems equivalent to bilinear, hysteretic systems are presented

in Chapter 8. In these examples, the energy dissipated by each

• system is computed and the results are compared.

'.
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CHAPTER 3

" IDENTIFICATION OF PARAMETERS IN THE TIME DOMAIN

3.0 Time Domain Approach
The time domain parameter identification procedure is used

to introduce the identification procedures for the models

described in Chapter 2. Though time domain approach is not used

extensively in this investigation, the method can still be effec-

tive under certain circumstances. Particularly, the time domain

identification process is useful when the measured input and

response contain little or no noise.

Measured input and response data from a structural system

are used to estimate the system parameters. The measured input
data can be a base acceleration, force or a pressure function.

In the following, the measured response data are assumed to be
given as acceleration values. This assumption is realistic since

structure response acceleration is often measured during an

.Iexperiment or test by accelerometers installed in the structure.

3.1 Formulation

(j)
Consider Equation 2-3 and let z,, iL, and z. , 1=0,...,n-1,

be the response displacement, velocity, and jth derivatives of

the displacement at time, tL = Ut, = 0,...,n-1. Let f and
f( J )  = O,...,n-1, be the force at time ti, = O,...n-I and

its Jth derivative. Then Equation 2-3 can be written at time

tt to obtain

1 + cM+1 M . f(J) + mz(i+2)) mz*
'co co = fI

J =1: "' " =O,...,n-1 (3-1)

The reason for normalizing with respect to co is that co should

never be 0 for the system under consideration.

"14 '
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The notation in this equation can be simplified by taking

* 1 CM14+1a al + a + -- j 1.,M (3-2)Co..- J 1 CO

Equation 3-1 can be written as

M

a a+ aii + a.+ 1 ( + (J)-J2 f MY,

jul

0- 0,...,n-1 (3-3)

V. The notation in this equation can be simplified by defining

*z zL L  + .it .  + mz M+2

.A.. O,...,n-1 (3-4)

_-,".a "(ao ai a2 .. a,,+, (3-5)

where the T superscript refers to matrix transposition. Using

these expressions in Equation 3-3 yields the relation

1 Iz aj= f9. - Myi,, L. O,...,n-1 (3-6)

This is the equation governing the linear system response at

time t9 .

. ., The notation can be further simplified by defining

{zol- fo - M~20

(Zi" fl -

- .[Zf] - fz (3-7)

z f

Zn-- n-1 n-i

Lib
-', *'

ii ,- . . -: . -- ' - --,. - ..) -'- *- .,' -. - . - - -- . .- .-.- - -.- , - .. - ., -4 ' ,., '. - -.- ' .
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Using this expression, the sequence of Equation 3-6, for

, o...,n-1, can be written

[Zf] .. If (3-8)

This equation governs the linear system response at all times.

When (1) the system from which the data were measured is truly
linear, (2) there is no noise in the measured data, and (3) the
derivatives and integrals of ft and zt, = O,...,n-1, are

known exactly, Equation 3-8 can be satisfied exactly by the

measured data and a set of coefficients. In general, these

conditions cannot be satisfied exactly, therefore, an error term

should be included in Equation 3-8. Define the error vector as

.:, ." " " l Izf l - I fz1 (3-9)

The element c, 1-O,...n-1, designates the error term at
time tj. This error quantifies the data nonlinearity, the

measurement noise, and the inaccuracy of the derivatives and

integrals of Yj and ft. In Equation 3-9 IZfI and {fz } will be

treated as known quantities which can be measured during an

experiment. The error vector in Equation 3-9 thus becomes a func-

tion of the system parameters, (a).

The next step is to identify the parameters of the system

model. A least squares approach is adopted in this

investigation.

*.-. An overall measure of the mismatch between the measured data

and the model in Equation 3-8 is established as follows.

2 -={T {E} a (aT [Z T T)( {a}-

(3-10)

*L4
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This is referred to as the squared error between the measured

* data and the system model. This error can be minimized through

the proper choice of the parameter vector {a. This can be done

, -. by letting

3c2  ac2  ac2
U2 0 aC , (3-11)

and solving this sequence of equations for the aj, i-O, •M+I

This solution can be executed and the result, in vector form, is

[a) ([ZT -[f If ]T if, 1  (3-12)

The parameter vector chosen above is the best estimate of

the system parameters in a least squares sense. If the quantity,
;2/n (where E2 is computed using Equations 3-9 and 3-10), is

relatively small, then Equation 3-3 accurately represents the

m measured system. if this is not true, then the model of Equation

3-3 is inadequate.

The E2 will be equal to zero if the measured data are

noise free, the system is linear, and the computed derivatives

and integrals of the measured data are exact. Failure to meet

one or more of these requirements will cause E2 to be nonzero.

In practice, the parameter identification procedure outlined

above can only be used effectively when there is little or no

noise in the measurements. The method is particularly effective

when the parameter M is set to 0 because this model will not, in

general, require the computation of derivatives of ' and f. How-

- ever, when noise is present and M - 1, the procedure loses its

accuracy. If the measured raw data, 'z and fg, k=0,...n-1,

' *are used to obtain the derivatives through numerical differentia-
tion, then the estimated values of'i"and { may be very poor due

to amplification of the effects of noise.
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In view of this, alternate procedures for parameter identi-

1 fication in the presence of noise must be established. The

following chapters develop a frequency domain approach to the

identification of system parameters.

* S

'f

i"
.1

S . . S
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CHAPTER 4

. IDENTIFICATION OF PARAMETERS IN FREQUENCY DOMAIN

4.0 Identification of Parameters

The problem of parameter identification can be posed as one

.. class in the broader topic of optimization. The object of param-

eter identification is to make inferences about the real world

and mathematical models on the basis of measured input data. The

measured data in this study were assumed available, and were

simulated to represent the field data.

First, it is assumed that there is no noise present in the

measured data. Then, noise data are introduced. Note that the

measured response data are given as acceleration values. This is

realistic since the structural response acceleration is often the

measured quantity in an experimental test.

4.1 Second Order System

- Now, consider the second-order model, Equation 2-4, Equa-

tion 2-4 can be simplified by taking

1 =ao, al ci(41-. 1_c (4-1)cc ai-
T-5 T-.

The equation governing motion of the system becomes

mz + alz + aoz = f (4-2)

Fourier transform both sides to obtain

2m(iW) Z(w) + al(iw)Z(w) + aoZ(w) = F(w) (4-3)'

..2 where

4 ..

o.
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pZ(W) fz(t) e-lWt dt m<w~
•i °

F(w) f(t) e t dt - < w < (4-4)

are the Fourier transforms of z(t) and f(t), respectively. This

equation can be rearranged and combined with Z(w) and F(w) terms

on one side of the equation to obtain

- ,. ra2 F -5
(-mw" + ao + aliw) =F (45)

Multiply each side of the equation by its complex conjugate to

obtain the modulus squared.

l-mu 2 + ao + aiij) = 4  (4-6)- Izl

Evaluate the left side and let IF]2/Z12 Q( to obtain
.i.. •

(ao - mw 2 ) + (a1w) 2 - Q(w) (4-7)

" This equation can be used to identify the parameters of second-

order linear system. However, this equation is exactly satisfied

if and only if: 1) the system under consideration is linear; 2)

all measurements are noise free; and, 3) the Fourier transforms

of z*(t) and f(t) used in Equation (4-7) are exact. When these

requirements are not satisfied, Equation (4-7) will include an

error term (or noise term). This practical case is usually the

one that needs the most attention.

When noise is present on the measured input and response,

Equation (4-7) can be written as

(ao - m2 2 + (aiw)2  Q(W) + C(w) (4-8)

_.. -. ,. .
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Note from Equation 4-2 that ao is the equivalent stiffness and

1 ai is the equivalent damping for the second-order linear system.

S."Therefore, ao is greater in magnitude than al. In view of this

i •and the form of Equation 4-8, ao can be estimated by noting the

..- frequency where Q(w) + E(w) is a minimum whenever the equivalent

damping factor is much less than 1 (say less than 0.2). This

. ". will be true in most civil engineering systems.

Denote the frequency where Q(w) + c(w) is a minimum by

wm. Equation 4-8 shows that, approximately,

ao zmwm2 (4-9)

since the first term on the left is approximately zero when

,- g Q(w) + c(w) is a minimum. Substitute Equation 4-9 into Equation

4-8; this yields

m(W m 2) + (aa)2 Q(M) + (W) (4-10)

Now, it is necessary to find the coefficient al which minimizes

the e(w).

The coefficients al can be evaluated using a least-squares

approach, where the integral of E2(w) over a specifiz range of

frequencies is minimized. Based on Equation 4-10, set

1..b (ai2W2 + m2(w . 2) . Q(W) dw = c2(w) (4-11)
a

where wa amd wb are lower and upper bound frequencies,

respectively. This frequency band is chosen so that the system

response behavior can be fully characterized. It is anticipated
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that the frequency band includes the natural frequency for a

5 mlinear or slightly non-linear system. For a highly nonlinear

system, the characteristic frequency, wm, will shift. However,

.. the frequency band can be located by finding the frequency where

Q(W) + E(w) is a minimum, and selecting the frequency band around

-mthis frequency.

In general, the lower frequency, wa, is located at a point

where its corresponding Q(wa) + e(wa) value is about 5 times

as great as the minimum value of Q(w) + e(w); and wb is the

higher frequency where Q(wb) + e(wb) is about 5 times greater

- than the minimum value of Q(w) + c(w). This method is used to

select wa and wb based on an approximate linear analysis.

When wa and wb are chosen in this manner, the interval (wa,

wb) will be approximately the half power bandwidth of the sys-

tem. This frequency interval reflects the characteristics of the

system.

* Take the first partial derivative of E2 with respect to

al2, and set it equal to 0. The result is

a2  /b (a1 2w2+ m2 (wm2 2) 2 Q(w))w dw 0 (4-12)

* a

Simplify this to obtain

W m
al2  d J (Q(W) m n (2 U2))2 dw (4-12a)

-b a

Integrate the equation where possible to get

Li
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b TW

8" 12 : = 5 Q 2 dw-m 2 [ W

2 5 5 5) + 1 7 7(4-13)m (wb a 7(wb a)(413)

-. Let wa =qa n

Wb qb m (4-14)

where qa is a coefficient less than one and qb is a
coefficient greater than one. This equation can be further

simplified

2w
a12 m 5 b d2 Q(w) dw + m2 [ (qb3  qa3"b5- qa5 w a 7"

b aq m a

* + 2(qb5 - qa5 ) -5 (qb7 - qa7) (4-15)

This equation provides the value of a,. This is the best esti-
mator in the least-squares sense. All the parameters in this
equation are known except the integral of the w2Q(w) term which

can be evaluated numerically.

4.2 Third Order Equation
The second-order linear ordinary differential equation may

i .not be considered an accurate representation of the hysteretic

system. It is hoped that the third-order linear system may
improve the accuracy in some sense.

L2 Equation 2-6 can be simplified by taking

1 =0, C2 C1
C ao, - al, = 2 (4-16)

-. 0-
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Then Equation 2-6 becomes

ma2 " + m" + all + aoz = f + a2f (4-17)

Fourier transform both sides to get
I0

(ma2 (i)3 + m(iw)2 + al (iw) + ao F

1+ a2 (iw))

The symbols used in this equation have the same meaning as in

- earlier equations. Multiply each side of the equation by its

complex conjugate to yield the modulus squared

3 2. 2

- ima2w - mw2 + ialw + a21 F 2:::: 1 + z  -(4-19)
11f ia2 W2  IZI

Evaluate the left hand side and let IF/IZ12 be replaced by

Q(w) to obtain

22 2 -m
2  2(ao - mw2) + w (al mw a2)2

1+( w 2 - Q (w) (4-2o)
1 + (a2{o)

This equation governs a third-order linear system in the fre-

quency domain. Measured data can satisfy this equation exactly

if and only if: 1) the system under consideration is linear; 2)

all measurements are noise free; and, 3) the Fourier transforms

' used to define Q(w) are exact. These conditions, however, are

not usually met. In fact, the purpose of this investigation is

to use the higher-order linear system to represent an hysteretic

system. Therefore, measured data do not usually satisfy the

i,

. . -
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above equation. To account for this explicitly, Equation 4-20 is

* written

2 2 2
(ao mw + 2(al -mw 2a2)

___--"____ _ = Q() + (M (4-21)
1 + (a2w)2

e(w) is a noise term which must be minimized by the proper choice

" of system parameters. This equation can be used to identify the

_- system parameters following several approaches. Two of these are

summarized below. One approach approximates certain terms in

Equation 4-20 to obtain estimates for the system parameters,

while the other approach uses a search technique to estimate

system parameters.

The first method to be investigated is an approximate tech-

nique. When az is small compared to the characteristic fre-

quency, Wm of an SDF system, the (a2w)2 term in the denomi-

nator can be neglected. This is usually true when nonlinear

deformation is hot too large. Eliminate the (a2w)2 term in

Equation 4-21 to obtain

'K (ao - mw) +w (a- mw 2a2) = Q(w) + e(w) (4-22)

When al and a2 are small compared to ao (which is usually the

case, the minimum of the left-hand side occurs near the frequency

W -= (4-23)

As previously described, the characteristic frequency, wm, can

be found when the Q(w) + e(w) term is a minimum. In terms of

win, ao can be written

ao =mwm2  (4-24)

• ji

e- L-

.-"...........--%~fi.-. ~ .* .
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Expand the second term on the left side of Equation 4-22 and use

the result of Equation 4-24. Neglect the m2W4 a22 term. Then

Equation 4-22 becomes

(W 2 _ + w2 (a 2  a 1 ) Q(w) + c(w) (4-25)

Let al2 = bi and ala2 = b2, then (4-26)

W2 (bi - 2m 2b2) -. (Q(w) - m2(w2  w 2)2)= e(W) (4-27)

When this expression is evaluated at the discrete frequency

= wk, the result is
2 2 m2(2 2k2)

' (b 1 - 2 wb - m (W - k Ck (4-28)

The system parameters, al and a2, can now be identified as

those which minimize the sum of the squares of the sk terms in

..Equation 4-28. Consider a sequence of discrete frequencies
uniformly spaced in the interval (wa' wb) " These are a'

! a + AW, Wa + 2aw, etc. Define

bi= (bz b2)T (4-29a)
: ' ' i! a " re a 4

" a' a + a 2m ( a +a

W= a + 2AW - 2m(a + Aw)(4-29b)
[Xa a

~" 
"-b4b 

2m

L

d.% 
,-- 
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ii! ) 22  2

21=

W-' i•, -
2  (ro))

Q- - "2 -. a+W 2  (w aw)2

m - QW+ 2A -im 2 (( m2((- +2W2)2

Qw 2 ( 2 b2 2

a a b

-'. Note Aw is equal to (2r/T) and T is the total duration of the
excitation. (was wb) defines the range of frequencies over which
the system is analyzed. As in the identification of parameters

" mof the second-order linear system, only a portion of the fre-

quency range is used in the parameter identification.

' .This frequency range can be chosen as before. In terms of
the matrices defined above, Equation 4-27 can be w-itten at
discrete frequencies as

[xI ] lb) - {x2} = {} (4-30)

The vector {b} can be found by minimizing the sum of the squares

of {ei. This is E2 = {cjT li The vector {bi which mini-
. mizes E2 is

fb}= ([xl]T xl])'lxl I T {x2l (4-31)

When bi and b2 have been computed, al and a2 can be found from
Equation 4-26.

a I b, a2 = b2/al (4-32)
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This solution provides approximate values for the parameters in

* the third-order linear system which represents the hysteretic

system.

Another approach can be used for the estimation of param-

eters in the higher order linear system. This is a search pro-

cedure which iteratively estimates the parameter values. Equa-

_. tion 4-21 can be rewritten

2 2
-= (ao-mw) +w (al- mwa2)

c(W) Q(W) -2 (4-33)..,.. 1 + (az,,)

This quantity is a measure of the mismatch between the measured

data, reflected in Q(w), and the model, reflected in the second

term on the right side of Equation 4-33.

This mismatch can be either positive or negative and can be
used to define one measure of the difference between the model

. m and the measured data over a range of frequencies. This measure

is

% 2"e
2 = ~ , e(k) (4-34)

k

where the sum is taken over those discrete frequencies in the
- interval (wa, wb). This is the square error of the model.

This error is minimized, however, when the model parameters are

' ~ chosen to satisfy the sequence of equations

- 2  ac2  ac2

Taa = 0 = 1 = (4-35)

The parameters ao, al, and a2, which satisfy these equations

establish a model which is optimal in a least squares sense.

Equations 4-35 can be solved numerically using a search

technique. A computer program was written to solve Equation

L-':,. i
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4-35. The program, included in the appendix, uses Newton's meth-

* mod to search for the solution. The analysis procedure followed

in the computer program is identical to that used in solution of

the problem sumarized in the following section. The steps in

--the solution procedure are listed at the end of Chapter 5.

.

..e
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CHAPTER 5

SYSTEM WITH TIME-VARYING PARAMETERS

5.0 Time-Varying Parameters Model

PM Sructures may exhibit time-variant nonlinear response to

strong motion excitation. Time-varying structural properties

were not considered in the previous chapters. In this chapter, a

structure is modeled as a time variant single-degree-of-freedom

(SDF) oscillator, and a methodology is introduced to determine

its parameters using the observed data. It is important to

introduce a technique which can be applied when noise is present

in the measured data.

To demonstrate this procedure, consider an SDF linear system

.9 ~.with mass m. Let the damping and stiffness parameters for this
-.9-

system be time varying. Its equation of motion is

m + C(t)i + K(t)zzf (5-1)

• '. in which z is the displacement response of the system; C(t) and

K(t) are time vaiant damping and stiffness functions of the sys-

tem, respectively; and f is the forcing function. It is proposed

that this equation be used to model the behavior of a system
governed by Equation 2-1. Observe the system from time 0 to T

and assume that z(O) = 0 and i(O) = 0.

The functions (C(t) and K(t) are assumed to have the form

C(t) - (1 + at) co

K(t) = (1 +t) ko (5-2)

Here, co and ko are the damping constant and the stiffness con-

stant, respectively. a and 0 are constant coefficients which are
.L usually much less than one.

-.

* *..9
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In many practical cases, it is observed that the structure

displays an increase in damping and a decrease in stiffness when

the structure excites an inelastic response. This implies a is a

positive constant and 8 is a negative constant.

In this study, although a and 8 will be considered as small

-: values, they will be large enough to influence the system's prop-

erties. This permits treatment of Equation 5-1 as a perturbed

differential equation. When a and 8 are both equal to 0 (unper-

turbed), the equation 5-1 is simply a second-order differential
equation with constant coefficients which can be easily solved.

The solution of Equation 5-1 can be written in the form (for

example reference 82)

z Z z0 + a zC1 + 8 z, + high-order terms (5-3)

Since a and 8 are small, the high-order terms will be neglected.

" ISubstituting Equation 5-3 into 5-1 and expanding yields

m( + + 0YO)+ CO (1 + at) (io + ai' + 8ai)

. + ko (1 + t) (zo + az, + 1zO) = f (5-4)

". Moving the force term to the left side of the equation, grouping

coefficients of the terms, 1, a, and 8, then equating the coeffi-
-d cients to zero results in

mzo + coio + kozo = f (5-5a)

" m + coi + koz0 = - cotio (5-5b)

MnO + coi + kozl = - kotzo (5-5c)

These equations approximately govern the system's response when
time variation of the parameters is linear, as shown in Equation

.*-* ***, ,*
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5-2. If the excitation and the system's response are known, then
* Mthese equations can be used with a time domain parameter

*. identification procedure to estimate the system parameters.

However, when a time-domain parameter identification approach is
* ) used, problems arise if noise is present in the measured input

and response signals (see Reference 8).

A frequency domain approach to the identification of system.
" ._ parameters is pursued. Therefore, the equations of motion are

- .transformed to the frequency domain.

Let

,t"4t

-, zo(t) e -  dt (5-6a)

Z.(W) -f z (t) dt (5-6b)

- I a

define the Fourier transforms of zo(t), za(t), and zo(t).

- '.And let

-,; zo(t) = f Zo(w) elOt dw (5-7a)

=~~ 1 1Wit

za(t) f Z0(w) e dw (5-7b)

* ,

ZOMt f JZ~w) e itdw (-c

%a

',a
S. ; .> " . 2 : ' -, "I . . .

"  
. . " . ..'. . -. .- '- .. i - " ''' -, . --. . . , - .,-

I* a.
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define the inverse Fourier transforms. Then the Fourier trans-
* form of Equation 5-3 is

Z(W) =ZO+QZ~ + Oz~ (5-8)

It can be shown that the Fourier transform of Equations 5-5a
through 5-5c are given by

MW ZO(w) + co iwZo(w) + ko Zo(w) =F(w) (5-9a)

*M Z(W) + co iWz (w) + koZ (W) =co(W) + Wz'O(W)

(-9b)

-mw Z8(w) + co iwZO(w) + koZO(w) =-i ko Z' o(w) (5-9c)

Now solve the Equations 5-9 simultaneously. The result is

Zo(w) =H(w) F(w) (5-10a)

*Z'(a') =COH(&) (H(w)F(w) + w (H'(w)F(w) + H(w)F'(w)) (5-l0b)

Z,(w) =-ikoH(w) (H'F(w) + H(w) F'(w)) - (5-10c)

where H(w) is frequency response function and H'(w) is its first

derivative. These can be written in the forms

H(w) =[(ko -mwi
2 + i(WCO)J - (5-11a)

H'(w) = (2mw - ico) [(ko - mw2) + i(WCO)] - (5-11b)

F(w) is the Fourier transform of f(t) and F'(w) is its

derivative.

J W

F(w) =f f(t) e1( dt (5-12a)

W 61*
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F'(w) = -if tf(t) e-  dt (5-12b)

Substitute the results from Equations 5-10 into Equation

5-8. This yields

Z(w) = H(w)F(w) + aco(H.w) H(w)F(w) + w(H'(w)F(w)

+ H(w)FI())+ (-ikoO) H(w)(H'(w)F(w) + H(w)F'(w)) (5-13)

This is the approximate frequency domain expression for the solu-

.tion of Equation 5-1. It is considered accurate when both a and

. -' 0 are small. The displacement response also can be obtained by

inverse Fourier transformation of the Equation 5-13. Equation

5-13 is used in the identification process. Its use will finally

lead to the estimation of the parameters from a sequence of mea-

sured data.

5.1 Identification Procedure

The method described above provides the solution for the

Equation 5-1 in the frequency domain. When the measured values

of f(t) are used to estimate F(w) and the result is used in Equa-

tion 5-13 to obtain Z(w), this Z(w) will not, in general, match

the Z(w) estimated from the measured Z(t). Moreover, the

- calculated IZ(w)t will not match thetZ(w)I obtained from measure-

ment. The reasons for this mismatch are that (1) noise is inevi-

tably present in the measu, ed input and response. (2) the mathe-

matical model is linear, yet the measured data come from non-

linear structures and (3) the discrete Fourier transform of a

time series is used to represent the continuous Fourier trans-

form. In the following, a brief theoretical background is pre-
sented together with the simple description of the procedure for

finding the unknown parameters.

-. 4-.

i-
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An equation defining the mismatch between the measured data

N and the model of Equation 5-1 can be established. Let

.Z(m)(w)q be the modulus of the Fourier transform of the

.- measured structural response data. Let IZ(w) l be the modulus of

.. .,. the function obtained when the Fourier transform of the measured

input data is used in Equation 5-13. The difference between

these function is defined

M)= 1z - IzCw)(m)l (5-14)

- -When the discrete Fourier transform is used to approximate

the continuous Fourier transform of a measured or theoretical

signal, it is defined at a discrete set of frequencies,

wk = kaw, k = 0,1,...,n-1. Here n and Aw relate to the time

signal z(t) and its discretization. It is assumed that z(t) is

available on the interval (0, T) and is represented by the

discrete set of values zj, j=0,.../n-1. Thus, n is the number

p iof points where the signal is represented. Aw is given by 2%/T.

At a particular frequency w = wk, Equation 5-14 becomes

• " Zk(w)l - IZk(m)(W)1 (5-15)

"k can be positive or negative. A quantity which is

always non-negative and which summarizes the differences between

the measured, 1Z~m) 1, and the theoretical, lZkt, structural

. responses in the frequency domain over a range of frequencies is

given by

"-k2 . k (5-16)
kk

This is the square error between measured data and the

model. This error can be minimized by properly choosing the

[1 parameters, ko, co, a, and 0. A method that chooses the

parameters this way is a least squares method.

.-

U
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The range of index values, k, over which the above sum is

taken, is not specified in Equation 5-16. Equation 5-16 need not

be summed from 0 to n. Rather, the summation should be carried

out over the range of frequencies which includes those values of

Zk containing significant information on the behavior of the

system. In general, this is the band of frequencies surrounding

the characteristic frequency of the system.

Now, one can choose ko, co, a, and a, as those constants

which satisfy

* °.." .3 2  3C2  - a 2  aC2-T. - T- = = = 0 (5-17)
WO co T F

The ko, co, a, and 8, can be located using a search technique.

To simplify the analysis, Newton's method is used to minimize

£2 with respect to ko, co, a, and 8.

Newton's method converges very rapidly once an iterate is

fairly close to the solution. The formal simplicity and its

great speed are the reasons why Newton's method is used in this

study.

To assure convergence in the numerical analysis, it is
Limportant to choose the initial iterate properly. A more

' "detailed discussion of the numerical procedures will be presented

later, in the numerical examples.

The steps in the numerical analysis are as follows:

1. Make the initial guesses at the parameter values, ko,

co, a, and 8.

2. Choose the computation increments Ako, Aco, Aa, and AB.

3. Choose the desired accuracy measure (used to judge

convergence).

, 4q ' .o

-. . .,
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4. Compute the partial first and second derivatives of E2

with respect to ko using central difference formulas.

S5. Use Newton's method to minimize £2 with respect to

ko.

6. Repeat steps 4 and 5, this time minimizing with respect

to co, then a, then 8.

7. Check the result to convergence.

a. If convergence has occurred, then stop the

analysis.

b. If convergence has not occurred, then repeat steps 4

through 6.

A computer prigram to execute the procedure described above

has been written. This program is named PUR and a listing is

included in the Appendix.

La,

U
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CHAPTER 6

m IDENTIFICATION OF MULTI-DEGREE-OF-FREEDOM SYSTEM

6.0 M.D.F. System Model

The restoring force model developed in the Equation 2-2 of

Chapter 2 can be extended for use in the modeling of a multi-

degree-of-freedom (MDF) system. In the present investigation a

shear beam type MDF structure will be considered. Figure 6-1

shows the type of structure under investigation. In this system

the mass, mi. is connected to masses m i and mi+, by the

elements denoted k. and kj+ 1.

The equation of motion governing the response of a linear

*mass excited undamped MDF system is

[mi] {f + [k] {z) = {fM (6-1)

where m and k are the mass and stiffness matrices, respectively,

and are written in the form

-m1

-2  0
m3

IP [mI (6-1a)

0

m

n

2 0 . . . 0

-k2  k2+k3 -k3

[k]= 0 -k 3  (6-ib)

• -kn

0 k n kn

L
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m n

Zn n

Un kn

n- n-l

n -l n- k n-i -

3 3

ml

U1 k

4 BASE
7777T777777TT7r1777--r77 ////////////177777

m: Mass
k: Stiffness

u: Restoring Force

z: Displacement

f: Forcing Function

Figure 6-1. Multi-degree-of-freedom shear column frame.

Li
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n is the number of degrees of freedom of the MDF system in

5 in Figure 6-1. The restoring force in this expression is [k] {z)

and this expression is valid as long as the response remains

. .;i linear. When the response is inelastic then [k] z} must be

" "replaced by a vector reflecting the time dependent characteristic

0 of the restoring force. I

In the present application it will be convenient to rewrite

, ".' the equation of motion in terms of relative displacements. Let

yj, j=2, ...n, denote the relative displacement between the

. j-lth and jth masses, and let yl denote the relative displace-

ment between mass, ml, and the ground. Then the relation can

-be written

{z} = [A] {y} (6-2)

where

"1 0 0 . . . 0

110 0 

[A] = .. (6-3)

Equation 6-2 provides an expression for 1z), and this result can

be used in Equation 6-1 to obtain an alternate expression for the

. equation of motion. This is

[ "M] {}+ [K] {y} {f) (6-4)

|, . .
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where

M1  0 0 *0

in2  m2  0 *0

m3  m3  m3

CM)= [m) [A] (6-4a)

mn n nmn

k-k 0 * 0

o k2  -k3  0

0 0 k -

3 4

The tern [k) {y} in Equation 6-4 can be expanded to obtain the
expression

k2Y2 -k 3

k3y3 - k4y4

[K (y) (-5)

k y~

Note that the restoring force applied to mass j is kjYj-kj+1Yj..
The objective in this investigation is to replace the simple
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linear restoring force with a high order linear model. Therefore
Uin Equation 6-5 each of the terms kj will be replaced with a

term uj. Each term uj is governed by a differential equation.
Let [U] and {R) be defined as follows

0 u2  -U3
0 0 U U

C* - (6-6)

.. ,0 0 * u
* nj

{RI= (6-7)

Then the differential equation governing the motion becomes

[M)0" ~+ [U] {R I= {f 1 (6-8

Each ui, i=1,...n, is governed by an equation of the form

~(j cIMli (6-9)

J =0

where cjj, 19... n, J=0, ...,M+1, are the parameters which

characterize the restoring force. The superscript (J) refers to

Li the ith derivative of ui with respect to time. This equation

is analogous to Equation 2-2 for the SDF system.

CC-~
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Equation 6-9 can be written in matrix form using thej

P following expression. Let

c 0 0 * * * 0

0 c2 0 0

-[Ci) 0 0 cj0 .=0,...,M+1 (6-10)

0 0 0 * c.j

Then the sequence of Equation 6-9 can be expressed

2 l ci] u'j = CM+lJ {Y)1 + {..I (6-11)

j=0

where {u~Cj)) is the jth derivative of the vector

U,

2Y

* - Un

To obtain the differential equation approximately governing

j :- ~the motion of an MDF system, it is necessary to combine Equation
6-8 and 6-11. Rearrange Equation 6-8 to obtain

[UI] (R I (f) [M] {YI (6-13)
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Let

0 11 1

fDJ= (6-14)

0 0 01

Premultiply both sides of Equation 6-16 by [D]; the result is

~Y1

But the left side of Equation 6-15 is simply equal to {ul.
Therefore

{u) = [D) [ff1 - EM] fy)] (6-16)

and thejth derivative of fu) is

ujl= ED] M)(6-17)

*~This expression can be used in Equation 6-11 to obtain
1M

M - EM) y(j+2)j C yi+ y

_j-0 
(6-18)

*Upon rearrangement this expression becomes

(~E~i ED) M) {(J+2))) C 1  J y

M
.E[Cj] ED) ff(i)) (6-19)
j 0
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This is the equation assumed to govern motion of the inelastic

MDF system. The element restoring forces of the MDF system are

.* governed by Equation 6-9. The governing equation for the MDF

system is analogous to Equation 2-4, the governing equation for

the SDF system.

When the parameters appearing in Equation 6-19 are known and

- the input is specified, the equation of motion can be solved and

its solution provides the structural response approximation.

Several measurements of structural responses can be evaluated.

For example, the response displacement, velocity and acceleration

at all structural degrees of freedom can be formed. Beyond this,

other measures of structure response, such as energy dissipated

by the structure, can be determined. Later, numerical examples

of structural response computation will be given.

The objective of this investigation is to perform structural

parameter identification for inelastic structures. Equation 6-19

could be used to execute such an identification, using measured

data, but the presence of the higher derivatives of both input

and response precludes the practical application of this

* . approach. (See Reference 8). A better approach to the parameter

identification problem is in the frequency domain. Therefore,

n Equation 6-19 is transformed. Fourier transformation of both

sides of Equation 6-19 yields the expression

[C [D] [M] (iw)j+ + (iw)[CM+l] + [I] {Y)

1)
Mr

°°j [D (i )J { ) 6-0-jzO!

=,° - 1 . • ., -° ° - . . - - -. . • ° o . • . .. . . . . . .

° % w' o -. . . % . ' • . • . • • .o o - - . . . . . 4
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where

U{Y(W)1 = {y(t)) e''~tdt (6-20a)

{Fw}I {s t)itd (6-20b)

To use this equation for parameter identification, the

following notation is established. Let

EH ~'w)) L D] [M] + (iw) +

[H(w)] OW (6-22)+ 1

0

Hni(w) H22(w) .H (w

{Y) =JJ F (6-23)

H. H
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The jth term in the vector {Y} is

nI

o Y(W) Hjk(w)Fk(, )  (6-24)

k=1

. This is the Fourier Transform of the structure response at the

jth degree of freedom of the structure. The modulus of the

response at this degree of freedom is

n

IYj(W)I =I Hjk() Fk(w)I, j=1,...,n (6-25)
k=1

r1 6.1 Identification Procedure

Equation 6-25 can be used to execute the identification of

the structural model parameters. If the structural system under

consideration is linear with governing equation given by Equation

6-19, and if its input and response can be measured exactly,

without noise, and if the Fourier Transform of these signals is

performed exactly, then measured data can satisfy Equation 6-25.

But, in general, measured data are noisy. The Fourier Transform

used in practical computation is the Fast Fourier Transform

' (FFT). And the model of Equation 6-19 does not precisely charac-

terize the structural system. Therefore, Equation 6-25 will not

- generally be exactly satisfied where Yj(w) and Fk(w) are

obtained using measured data. In view of this the following

expression can be written

£j(W) =fY3(w)f - E Hjk(w)Fk(w)I (6-26)

-..,k=1

ON
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This is an error term and it characterizes the differences

between the measured response data, and the response that would
be predicted Ly the model, Equation 6-20.

A least squares approach can be used to minimize this

error. Let

j2 f- 2 (w)dw (6-27)

a

define the squared error of the model in the frequency domain at

, degree of freedom j. The integration is taken over a range of

frequency values such as wa through wb. These limits are

usually chosen to include the frequencies where the system dis-

plays power.

A measure of the model error at all degrees of freedom is

obtained by summing the €2 at all points.

": -! n
= Z C? (6-28)

* j=1

This quantity reflects the model error in the entire system.

This error can be minimized with respect ot the model parameters

cij, i=n,...n, j=O,...M+1. by solving the sequence of equation

aC2
= , i=,...,n, j=O, ...,M+1 (6-29)

i. i •

for the cij. The solution yields the system parameters which

best characterize the model in a least squares sense.

ii

L4
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Because of the complexity of the system model, the computa-

tion used to solve Equation 6-29 must be executed numerically.

This computation is a search for the minimum value of c 2in the

*... nX(M+2) dimension space of system parameters, cij , i=l,...,n,

j=O, ...,M. The search can be carried out in one of two ways.

First, a search can be executed wherein the quantity £2 is

minimized sequentially with respect to each of the parameters

cij. For example, 2 can be minimized with respect to Cll

then c12, then c13 etc. The minimizing sequence is repeated

as many times as necessary to obtain convergence in c2.

The second approach to minimization of c2 is the gradient

search technique. La this technique, the gradient of £2 is

computed at a point in the cij space. This information is used

to choose a new set of parameters where £2 will be smaller than

- - its original value. At the newly adjusted point, £2 and its

gradient are recomputed, and this process is repeated until £2

is near its minimum.

In the present investigation the former analytical approach

is adopted. Numerical examples in Chapter 8 shows how a least

squares -computer program can be used to identify the parameters

of an MDF structure.

ii ?
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CHAPTER 7

* nENERGY DISSIPATED RELATED TO CONCRETE DAMAGE

7.0 Introduction

This presentation describes and evaluates an experimental

study of the strength reduction and behavior of plain concrete

subjected to cyclic loading. It is recognized that concrete is

* -. damaged by application of stresses lower than the ultimate

stress. The concrete fracture process begins at very low stress

and is continuous.

The damage caused by loading to small stresses is slight and

each subsequent loading over the same stress range produces a

negligible increase in damage. However, as the loading stress is

increased, more damage occurs. Stresses with peak values in the

range of 40 percent to 100 percent of the ultimate stress produce

considerable damage and subsequent loading over the same range

cannot be neglected. In practical situations, when a severe

excitation is applied to a structure, it is not uncommon for the

peak stress to go beyond the 50 percent level of ultimate

stress.

When loading is repeated, damage accumulates in a concrete

specimen; consequently it no longer retains its original

strength. This concept suggests that it might be useful to

attempt a quantitative evaluation of damage occurring in concrete

during the cyclic loading. The objective of this study is to

demonstrate that concrete damage and strength reduction are

related to energy dissipation under repeated loading.

When energy is dissipated during loading and unloading, an

hysteresis loop is formed in the stress-strain curve as shown in

Figure 7-1. The area enclosed represents the total energy dissi-

pated during one cycle of loading. This dissipated energy may be

classified into two parts, namely, damage and damping energy

Ll
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dissipation. However, the total accumulated energy dissipation

* is of primary interest in this experimental study. A more

detailed discussion of the energy dissipation mechanism is given

in Reference [69].

There are many methods that can be used to detect and assess

damage in concrete. Among the most frequently used techniques

are those which assess change in initial elastic modulus, and

those which measure acoustic emissions, change in pulse velocity,

and energy dissipation. In the present study, the dissipated

energy method will be adopted. Attention will be focused on this

means for measuring damage because of its intuitive relationship

with the energy dissipation of an hysteretic structure under

.U dynamic loads. Other methods may be considered as in References

[69, 70, and 71].

In the present investigation a sequence of physical experi-

ments was performed. In each experiment a concrete cylinder

(specifications given below) was loaded in uniaxial compression.

The load applied to each cylinder was a cyclic load, and the

energy dissipated was calculated. This was done by plotting the

stress versus strain diagram and by determining the area enclosed

n within the hysteresis loops. Varying amounts of energy were

- "dissipated in the various test specimens, and upon completion of

cyclic testing each specimen was loaded to failure in order to

- .determine its residual strength. For each test specimen, dissi-

- pated energy and residual strength were recorded and the relation

between these quanticies was established.

More details of the testing procedure are given below,

together with fresh concrete properties observed during the mix-

ing. These may provide a useful reference for the concretes used

in the test.

['*. .. . . .
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The concrete specimens tested in this investigation have the

m mix details and plastic properties of fresh concrete as shown in

Table 7-1.

TABLE 7-1.

Concrete Mix Details

Aggregate Ratio of Maximum
Cement Coarse:Fine Aggregate

Type of Cement W/C Ratio Ratio Aggregate Size
(in)

Type 1 A 0.53 4.8 60:40 3/4

Plastic Properties of Fresh Concrete

Room Unit
Mix No. Slump Air Temperature Weigh

(in) % (degrees C) lb/*

2 WE 4 3.5 27 145.8

3 WE 4 1/4 4 30 148.96

The specimens were all cast in 6-in x 12-in steel cylinder

molds. The concrete mix proportions were constant for all the

specimens. The specimens were tested at a consant loading rate

L of 1000 lb/sec in a RIEHLE compression testing machine. The

force versus strain results of each test were plotted with an x-y

-* electronic recorder. This recorder was connected by an elec-

* tronic compressometer which is properly designed for this spe-

cific purpose as shown in Figure 7-2. The test machine was

properly calibrated before the test.

To ensure a uniform displacement of the specimens, thin sul-

fur caps on the two end surfaces of the specimens were employed

and were allowed to harden before testing. Specimens were cured

in water in the curing tank at 25°C for 14 days and 28 days.
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In assessing the energy dissipated and residual strength,

specimens were subjected to a series of cycles of loading and

unloading. The specimens were loaded up to a value in the range

of stress, 90 - 94 percent of the ultimate stress. This ensured

that damage occurred for every cycle of loading. At the end of

each cylce of loading and unloading, the testing machine was

returned to a rest position, and reloading was commenced immedi-

. .ately. To ensure that concrete characteristics would be as

nearly uniform as possible, all the tests in each sequence were

run in one day.

7.1 Discussion of Results

Numerous physical experiments were conducted in this inves-

tigation and characteristics of concrete accumulating damage can

be derived from the individual tests and all the tests, jointly.

In the following section the characteristics of individual tests

are discussed first; then damage characteristics related to the

entire test sequence are discussed.

A typical stress-strain diagram obtained during one experi-

ment is shown in Figure 7-3. A number of characteristic features

can be extracted from this result. On the initial cycle the

specimen was loaded to a stress near its ultimate (95 to 98 per-

L cent). It can be seen that the most significant change in behav-
ior between consecutive loading cycles occurs between the first

and second cycle.

The first loading curve shows more curvature than the fol-

lowing reloading curves in which curvature tends to diminish.

The reloading curves show progressively decreasing slopes. This

may be attributed to structural degradation of the specimen.

Another measure of degradation can be established by plot-

ting the initial elastic modulus for a particular cycle versus

energy dissipation prior to that cycle. This is shown in Figure

7-4. As the energy dissipated gradually increases, the initial

elastic modulus diminishes.

°-.............................. 
. * . .. . . . . . . . . . . . . . . . . . . . . .
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The above discussion was based on one typical sample. A

similar discussion could be given for the other samples. Figures

7-5, 7-6, and 7-7 show the stress-strain curves for some other

specimens tested during this investigation.

Some general characteristics of the accumulation of damage

. in concrete specimens can be derived from the entire collection

of results. A total of 24 concrete specimens were tested in this

investigation.

As noted earlier, the specimens were subjected to cyclic

loadings inducing different amounts of energy dissipation in the

various cylinders. Not all specimens were cycled to failure. At

least, three of the specimens were tested for the determination

g Iof the ultimate strength. Other specimens, however, were cycled

till failure. The remainder of the specimens were cycled till a

certain amount of energy was dissipated; then these were loaded

to failure in order to find their residual strength.

I Using these data, a characteristic of the specimens can be

extracted. The total energy dissipated by each particular speci-

- -, 
L  men was plotted against the residual strength of the specimen as

shown in Figure 7-9. Another result can be illustrated by plot-

ting the total energy dissipated versus percentage of decrease in

strength as shown in Figure 7-8. Both diagrams show a decrease

in strength as the total energy dissipated is increased. Since

only a limited number of specimens were tested, no direct mathe-

matical expression relating the residual strength to the total

energy dissipated was obtained. While such a relation could be

established, further testing is required to derive a general

relationship. However, the present results provide the informa-

tion needed to conclude that energy dissipation is truly related

to the residual strength.

de2
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The experimental technique described above provides an

approach for the estimation of damage in concrete. Based on the W

physical experiments, the following conclusions can be made:

1. The most significant change in the properties of the

concrete occur between the first cycle and second cycle

- when loading in the first cycle is severe.

2. The initial elastic modulus of the specimens gradually

diminishes as energy is dissipated. This implies that

the damage of-concrete under cyclic loading occurs

progressively.

3. The energy dissipated in a concrete specimen is

adversely related to residual strength. As the energy

dissipated increases, the residual strength decreases.

.. Therefore, energy dissipated may be used to predict the

damage of a structure under a severe loading. Moreover,

total energy dissipated may be considered as an

P indicator of the degree of damage in an hysteretic

structure.

* Some restrictions apply to the above conclusions. The work

is limited to behavior in uniaxial compression. Other types

of loading are possible and further tests are required to charac-

terize damage under general loading. It has been assumed that

the creep effect is small enough to be neglected in this

investigation.

l

o* *. ...
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CHAPTER 8

NUMERICAL EXAMPLES

8.0 Data Description

In this chapter numerical examples are presented which

demonstrate the use of the analytic procedures developed in the

-" previous chapters. The first set of examples demonstrates the

identification of the model parameters for linear and hysteretic,

single-degree-of-freedom (SDF) structures both when measurement

noise is and is not present. One example demonstrating the time

' ', domain approach to parameter identification is summarized. Two

" •examples showing the frequency domain appraoch are presented.

Another example demonstrates the application of the analysis

presented in Chapter 6. The frequency domain approach is used to

identify the parameters of a multi-degree-of-freedom (MDF)

. -*. structure.

* The input used to excite the SDF system in all numerical

examples is a decaying exponential, oscillatory function. It is

generated using the formula

f(t) = e c cos(W t - .j] 0< t < T (8-1)

where a, cis j=I,...,N, and w., j=I,...,N are constants. *j,

j=I,.. .N, are phase angles which are random variable realiza-

tions; these random variables are independent and uniformly

distributed on the interval (0, 2w). a is a decay rate. The

cj, j=O,...N, are constants which determine the amplitudes of

the excitation. All the values of cj are taken as equal to c

in all cases for the examples. wj, j=I,...N, are equally

spaced in the interval including the characteristic frequency of

the system being analyzed.

-.

........... ....-. . . . . . . . .-* " .": - - " - -- .:;"- ." - " - " . -" . . ..&
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The forcing function defined above was generated at discrete

* times. Specifically, f(t) was evaluated at the times t=tl=lAt, P

1=0,.. .N-1. A computer program, named FORCE, which generates the

excitation of Equation 8-1 was used in these numerical examples.

Three distinct signal types were identified in the numerical

5 Bexamples. The first type used a computer program, named BILIN,

to compute linear and nonlinear response. BILIN can be used to

find the displacement, velocity, and acceleration response of a

given bilinear hysteretic system to an arbitrary input. It also

computes the energy dissipated by the structure during the

response. The second type used a computer program, named TIMEVA,

to compute the response. This program computes a linear time

dependent response defined by Equations 5-1 and 5-2 with a, ,

co, and ko constants. The third type used a computer program

named BLNMDF to compute the MDF structure response.

White noise was used whenever measurement noise was added to

the signals. The white noise is normally distributed, N(O,2 ).

A subroutine named NOISE was used to generate the noise signal.

The noise signals were added to the generated input and response

signals in the following manner. First, the excitation and

P lresponse signals were generated using programs FORCE, BILIN,

" "BLNMDF, and TIMVA. Then noise/signal ratios were selected and

.*.- used to obtain the variances of the noise signals. The noise

signals were generated as sequences of independent random vari-

ables, and directly added to the excitation and response. These

noisy signals were then used as inputs to do the identification.

Note, no filtering procedure was used on the simulated measured

signals during the identification process.

Three basic models were used to represent the hysteretic
systems. These are the second order linear, time invariant,

third order linear, time invariant, and second order linear, time

lap



67

varying models. All the model parameters were identified. The

identification procedures and formulations were described

previously. Different identification approaches may be applied

for the same model.

8.1 Example 1

"- This example solves a parameter identification problem using

the direct time domain approach, summarized in Equations 3-4

through 3-12. The parameters of the shock input are listed in

Table 8.1. A typical forcing function history generated using

these parameters is shown in Figure 8-la. The derivative of the

forcing function is shown in Figure 8-1b.

The notations for the parameters used in specifying the

numerical examples are those used in the text. Some additional

notations are defined here. c is the viscous damping in an SDF

* ,system. k is the initial stiffness in a bilinear hysteretic

structure. ky is the yield stiffness of a bilinear h steretic
Zy

rn structure. Zy is the yield displacement of a bilinear hyster-
etic structure. Zmax is the maximum displacement of an SOF

* structure.

In this numerical example, two basic problem types are

*" solved. These are summarized below.

(1) An input is generated using Equation 8-1. The input is

used to excite a linear SDF system with viscous damp-

ing. The structural input and response are stored, and

no noise signals are added to the input and response.

Then the input and response are used to identify the

model parameters, aj, j=O,...M+l, from Equation 3-5.

(2) An input is generated as in 1, above, but here the

response of a bilinear hysteretic system is computed.

No noise signals are added to the input and response.

The input and response are used to identify the model

parameters, aj, j=O,...M+I.

- *:.
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Figure 8-1a. Decaying exponential forcing function

for Example 1.
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Figure 8-lb. Derivative of forcing function in Figure E.la.
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For these two basic problems eight system identification

problems are solved. In cases one and five, problem type one

(above) is considered. In case one, a second order model (M=O),

Equation 2-3) is identified. In case five, a third order model

(M=1) is identified. In cases two through four and six through

-.eight, problem type two (above) is considered. In cases two

through four, a second order model (M=O) is identified. In cases

six through eight, a third order model (M=I) is identified. The
successive cases involve increasing degrees of yielding. In

these eight cases, the parameters of the second order model, ao,

al, and a2 (M=I) are identified.

Once the parameters of Equation 3-5 have been estimated, the

energy dissipated by the model is computed; and this is compared

to the energy dissipated by the actual system as computed in

BILIN. This computation is the one discussed in Chapter 2 and

given by Equation 2-7b. The energy computations are performed in

* programs ENER2, for second-order systems, and ENER3, for third-

order systems. The computations are performed using an incre-

mental form of the governing Equation 3-3.

The responses of some SDF systems to the shock input in

Figure 8-1a were computed. First, the response of a linear sys-

tem was computed for analysis in cases 1 and 5. The computed

displacement response is plotted versus time in Fiqure 8-2a. The

S9F structure spring restoring force versus displacement is
plotted in Figure 8-2b. The very slightly nonlinear response of

an A0F structure was computed for analysis in cases 2 and 6, but

this response is not shown. A more nonlinear response was

computed for analysis in cases 3 and 7. The displacement

response versus time is plotted in Figure 8-3a, and the spring

restoring force versus displacement is shown in Figure 8-3b. The

first figure shows a residual plastic displacement as the
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TIME - SEC
Figure 8-2a. Response of a linear system to the force in

Figure 8-la. k

* 10000.0 1
5000.0

118 0.0

-5000.0

DISPLACD'1E-T !P1N
Figure 8-2b. Spring restoring force versus displacement

for linear system.
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Figure 8-3a. Response of nonlinear system to the force in
Figure 8-la. k = 7000
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Figure 8-3b. Spring restoring force versus displacement
for nonlinear system.
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response vibrations diminish. The second graph shows the perma-

nent set as lateral displacement of the horizontal axis inter-

cept. Finally, a very nonlinear response was computed for

analysis in cases 4 and 8. The displacement response versus time

is shown in Figure 8-4a and the spring restoring force versus

:displacement is shown in Figure 8-4b. A considerable permanent

set is evident, as the motion diminishes, from the first figure.

The seond figure shows that large plastic deformations occur in

the structure in both directions of motion.

The energy dissipated by each structural system is listed

with the structural parameters in Table 8.1. ED is that energy

dissipated due to the action of the inelastic spring and the

action of the viscous damper.

Using the forcing function input described above, and the

computed responses, the parameters of the structural systems were

identified. The results of the parameter identifications are

given in Table 8.1. The energy dissipated when the identified

systems respond to the shock input is listed in Table 8.1 next to

the identified parameters.

Figures 8-5a through 8-9b show the computed responses of

some of the identified systems. The figure titles indicate which

systems generate the responses shown. The top (or "a") figures

show the computed responses versus time. The bottom (or "b")

figures show the computed restoring forces, spring force plus

" damper force, versus displacements.

Figure 8-10 compares three responses. These are: 1) the

actual nonlinear structural response obtained using BILIN in the

slightly nonlinear cases 2 and 6, 2)the response executed by the

identified model described in case 2, and 3) the response

executed by the identified model described in case 6. The two

latter responses practically overlay and very nearly equal the

actual response.

"-. .. . . . . . .
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.~Figure 8-5a. Displacement response of identified system to
force in Figure 8-la. (Case 2)
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Figure 8-5b. Spring plus damper restoring force versus
displacement for identified system. (Case 2)
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Figure 8-6a. Displacement response of identified system to
force in Figure 8-la. (Case 3)
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Figure 8-6b. Spring plus damper restoring force versus

displacement for identified system. (Case 3)
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Figure 8-7a. Displacement response of identified system to
force in Figure 8-la. (Case 4)
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V .- Figure 8-7b. Spring plus damper restoring force versus
displacement for identified system. (Case 4)
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Figure 8-Ba. Displacement response of identified system to
force in Figure 8-la. (Case 7)
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Figure 8-8b. Total restoring force versus displacement for
identified system. (Case 7)



78

2.0

1.0

0.0

-1.0

-2.01
0.0 0.5 1.0 2.0

TIME - SEC
Figure 8-9a. Displacement response of identified system to

force in Figure 8-1a. (Case 8)
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Figure 8-9b. Total restoring force versus displacement for

identified system. (Case 8)
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TABLE 8.1. PARAMETERS AND RESULTS FOR EXAMPLE 1

Input (Structural Excitation)

Case Number N a c wN n at

1 through 8 50 1.0 300 32.4 1256.4 256 0.005

Structure Parameters

Case Number m c k k ED

" 1,5 0.259 7.77 5829 - O 23292

2,6 0.259 7.77 5829 0 7700 23588

3,7 0.259 7.77 5829 0 7000 23674

4,8 0.259 7.77 5829 0 5000 21959

Identification Parameters and Results

Case Number; M a0 a, a2 ED

1 2 5829 7.77 21533

2 2 5825 7.79 21533
! 3 2 4574 8.13 21779

4 2 1620 9.69 23844

5 3 5829 7.77 0.0 21533

6 3 5823 7.85 0.0 21498

7 3 2527 99.65 0.0158 20824

8 3 6±0 108.11 0.0175 18666

A.

".



81

Figure 8-11a compares the actual nonlinear response of cases

3 and 7 to the second-order (M=O) model repsonse of case 3.

Figure 8-11b compares the actual nonlinear response of cases 3

. . and 7 to the third-order (M=1) model response of case 7. Both

models simulate response amplitudes quite well; the third-order

model is slightly closer than the second-order model in that the

third-order model provides a slightly better phase match to the

actual response than the second-order model.

-* In this numerical example, no cases are included where noise

was added to the forcing function input and/or the acceleration
response. Such cases were analyzed, but the results were so poor

that they are not summarized here. These results showed that the

direct, time domain parameter identification technique is not

effective in parameter analysis when recording noise is present.

The numerical examples summarized here show that the direct,

" time domain parameter identifiction technique can be used effec-

tively when the measured signals are noise free. This is best

confirmed by reference to Figures 8-10, 8-11a, and 8-11b. These

" -show that the linear model response can be made to match the

nonlinear response well.

3 nThe energy dissipation results, summarized in Table 8.1,

show that the third-order models provide the best simulatio- for

a nonlinear hysteretic system.

8.2 Example 2.

In this example, a sequence of parameter identif;cation

problems is solved using the frequency domain approach. Three

*. programs, FREQID, PUR3, and PUR, we;re written to execute the

parameter identifications.

. FREQID performs approximate frequency domain parameter

identification for second and third order linear models. It
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accepts both an input signal from FORCE and a response signal
from BILIN or TIMEVA. When desired, the white noise signals are

added to the corresponding input data. Then FREQID performs the

necessary Fourier transforms and other data operations. Follow-

ing this, the parameter identification is executed. One opera-

tion required in the parameter identification is estimation of

the characteristic frequency. This can be done simply by search-

ing Q(w) + e(w) for a minimum value. However, a more precise

* method for determining the minimum value of Q(w) + e(w) defined
in Equations 4-8 and 4-11 involves use of a least square method.

In this improved method, Q(w) + e(w) is used to identify the

characteristic frequency and other parameters.

In FREQID, an important assumption was made for the third-

order model, Equation 4-21. In particular, it was assumed that

a2 is small in value. The parameters of this model may be iden-
tified, without the assumption that a2 is small, by the search

technique. The computer program PUR3 was written for this pur-

pose. A detailed description of this method was given in

Chapter 5.

Program PUR performs parameter identification for second-

qorder time varying linear systems. The approach is based on the

procedure described in Chapter 5. The program accepts the inputs

and responses generated in the programs FORCE and BILIN or

TIMEVA, with or without noise. Four parameters, namely ko, a,

co, and 0 are identified. The program employs a search tech-

nique; the initial estimators can be chosen by using the identi-

fled parameters obtained from any of the methods.

Once the parameters have been estimated, the energy dissi-
pated by the model is computed. This result together with the

predicted response is compared to both the energy dissipated and

the response of the actual system. The energy and response

p.',
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computations are performed in program ENER2 and ENER3 for the
second and third order system, respectively..!

From the above description, the methods used in the deter-

mination of the system parameters can be summarized as follows:

Method 1. Performs parameter identification for the

second-order system in the frequency domain

utilizing Equation 4-15. No fitting equation for

Q(w) + e(w) is applied.

Method 2. Performs parameter identification for the third-

order system in the frequency domain utilizing
the equations from 4-29a to 4-31. No fitting

equation for Q(w) + e(w) is applied.

Method 3. Performas parameter identification using the same

approach as Method 1 except the input data
Q(w) + c(w) are replaced by the fitted polynomial

5 equation. This additional analysis is done in a
subroutine called FIT.

Method 4. Performs parameter identification using the same

approach as Method 2 and using the same procedure

described in Method 3.

Method 5. Performs parameter identification for the third-
*, ' order system using the search method described in

Chapter 5. The operation is executed in a

program called PUR3. Prior estimates obtained

from the above methods are used.

Method 6. Performs parameter identification for the second-
order time-varying parameter system in the fre-

:2 .quency domain. The search method described in

* Chapter 5 is used. This method also requires

prior estimators which can be obtained from the

information supplied in Methods 1 through 5.
,1:,

*..:

* * *%
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i.4

All the methods described above can be used to estimate the

parameters for the linear and nonlinear systems even when noise

is present. The duration of the excitation must be long enough

to characterize the system parameters.

In the following numerical examples, four basic problems are

solved. These cases involving different degrees of nonlinearity

in the system response are summarized below.

Case 1. An input excitation is generated using Equation

8-1. The input is used to excite a linear SDF

system with viscous damping. The excitation and

linear response are used to identify the model

- -, _parameters. Noise signals can be added to the

b igenerated input and response, if required.

Case 2 An excitation input is generated as in Case 1,

but here the response of a bilinear hysteretic

system is computed. Yielding occurs in theC. response. The degree of nonlinearity was

designed using a comparison between the yield

displacement of the bilinear system and the

maximum displacement of the linear system. Let

* Ithe yield displacement of the bilinear system be

zy. Let the maximum displacement of the linear

system be zmax . In this case, Zmax is taken as

6.7 and zy is equal to 6.0.
Case 3. Same as Case 2, but zy is equal to 5.0.

Case 4. Same as Case 2, but zy is equal to 4.0.

Case 5. An input excitation is generated as in Case 1.

The input is used to excite a linear SDF system

with time varying damping and stiffness. The
" excitation and response are used to identify the

model parameters. Noise signals are added to the

, simulated input and response when required.

"i
4

"
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The example carries out the parameter identification using

the methods described above. Specifically, methods 1 through 6

are used to identify the parameters. The parameters of the input

.f excitation are listed in Table 8.2. The notation for the param-

eters was specified above.

TABLE 8.2. PARAMETERS OF THE FORCING FUNCTION

" = 0.1 N = 50 cj - 10.0 j =1...,50

wj - (1.8 + 0.008j)I ,j = 1,...50

At = 0.05 n = 1024

A typical forcing function history generated by using these

parameters Is shown in Figure 8-12. Actual forcing functions

measured in the field usually contain a certain amount of noise.

Inputs with noise to signal ratios of six and eight percent are

shown in Figures 8-13 and 8-14, respectively.

The response of some SDF systems to the forcing input were

computed. The energy dissipated in each structure Is listed with

the structural parameters in Tables 8.3A and 8.38. All cases

were described above. The notation of the system parameters is
as follows: k is the initial stiffness; c is viscous damping; ky

": is the yield stiffness; zy is the yield displacement; zma x is the

maximum displacement of an SDF system; m is the mass of the SDF

structure.

TABLE 8.3A. SYSTEM PARAMETERS

k= 39.48 c 1.257 m= 1.0

Zma x  6.7 ky •0.0 At 0.05 n 1024

A "t ... . . . . . .. .
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" 80.0

40.0

0 .0 -.0

0

-40.0

-80.0
0.0 Time - Sec 50.0

Figure 8-12. Signal used to simulate the actual
input in Examples 2 and 3.

80.0

40.0

. 0.0

-40.0

-80.0
S0.0 Time Sec 50.0

Figure 8-13. Signal used to simulate the measured
input. (Includes 6% noise)
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80.0 __ _ _ _ _ _ _ _ _1

40.0

-40.0

-80.0

0.0 Time - Sec 50.0

Figure 8-14. Signal used to simulate the measured
input. (Includes 10% noise)
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-: TABLE 8.38. ENERGY DISSIPATION FOR CASE 1 THROUGH CASE 4

- Cases Zy Damping Energy Spring Energy Total Energy
Dissipated Dissipated Dissipated

Case 1 - 11028.20 0.0 11028.2

Case 2 6 10199.30 405.21 10604.0

Case 3 5 8364.27 1186.74 3551.0

Case 4 4 6300.53 1924.48 8225.0
.;, p.

First, the response of a linear system (case 1) was com-

puted. Then, a slightly nonlinear response of an SOF structure

was computed for analysis in case 2. The displacement response

versus time for case 2 is plotted in Figure 8-15. The spring

restoring force versus displacement is shown in Figure 8-16. A

small plastic deformation is shown. The total restoring force

versus displacement is plotted in Figure 8-17. The measuredm Iresponses for case 2 with a certain amount of noise are plotted

in Figures 8-18 and 8-19. Figure 8-18 shows a measured signal

with six percent noise to signal ratio. Figure 8-19 shows a
measured signal with ten percent noise to signal ratio. Two more

severe nonlinear responses were computed for analysis in cases 3

and 4.

-: ~ The displacement response versus time for case 4 is plotted

in Figure 8-20, and the measured response for case 4 with ten

percent noise to signal ratio is shown in Figure 8-21. The

spring restoring force versus displacement is shown in Figure

.. "". 8-22. A considerable permanent set is evident in Figure 8-20.

Figure 8-22 shows that plastic deformatior occurs In the struc-

ture in both directions of motion.

% " °
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Figure 8-16. Spring restoring force versus displace-
ment for nonlinear system (Case 2)
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Figure 8-20. Displacement response of nonlinear system
to the force in Figure 8.15 for Case 4
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Figure 8-21. Displacement response (Case 4) plus

10% noise.
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Figure 8-22. Spring restoring force versus displace-
- ment for nonlinear system (Case 4)
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Using the forcing function input, described above, and the

computed responses, the parameters of the structures were identi-

fled. The results of the parameter identification are given in

-: Tables 8.4 through 8.7. These results provide the identified

parameters in the noise-free case. The energy dissipated by the

identified system is listed next to the identified parameters.

,For method 6, the parameters ao, l, a2, and a3 identify with the

parameters ko, 0, co, and a, respectively.

TABLE 8.4. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED
FOR CASE 1

Method ao al a2 a3 Energy

I 1 39.17 1.26 11210.0

2 39.17 1.28 0.0 11090.0
" 3 40.01 1.28 10720.0

4 40.01 2.48 0.0236 9270.0

5 39.50 1.26 0.0 11200.0

6 39.33 0.0 1.274 0.0 10741.0

TABLE 8.5. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED

FOR CASE 2

Method ao al a2 a3 Energy

1 33.27 1.45 7968.0
2 33.27 3.98 0.05 7028.0

_ 3 35.84 1.28 10500.0

4 35.84 3.57 0.042 7690.0

5 34.27 3.68 0.062 10370.0

6 36.56 0.001 1.094 0.022 10077.0

4..
A.
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., TABLE 8.6. IDENTIFIED PARAMETERS AND ENERGY
DISSIPATED FOR CASE 3

Method ao al a2 a3 Energy

1 33.27 1.35 7802.0

2 33.27 2.98 0.032 7368.0

3 35.32 1.41 9482.0

4 35.32 2.74 0.027 8185.0

5 32.54 2.98 0.042 8324.0

6 40.21 -0.0013 1.589 -0.018 9661.0
I.;.

TABLE 8.7. IDENTIFIED PARAMETERS AND ENERGY

DISSIPATED FOR CASE 4

J Method ao ai a2 a3 Energy

1 33.27 1.67 7376.0

2 33.27 2.28 0.014 7053.0

3 34.61 1.75 7703.0

4 34.61 2.50 0.018 7486.0

5 30.30 3.95 0.066 7598.0

h 6 40.26 -0.0018 1.708 0.001 8186.5
,:.. -

Section 4.0 demonstrated that when the higher order

.,. linear model is used to simulate the actual system behavior, the

parameter ao must be estimated first in the identification pro-

cedures, methods 1 through 4. The estimation of this parameter

can be executed either by simply searching for a minimum in
. .. Q(w) + e(w), or by using a curve-fit to Q(w) + e(w), and then

: "finding the minimum of the curve. Figure 8-23 shows a realiza-

tion of Q(w) for a specific case. This is the ratio of the

Fourier transform moduli of the structure input and response. An

", ,- .: example of the quantity Q(w) + e(w) Is showm In Figure 8-24. It

b.. ." " , ,',_) ",, ,,* , *' j *%" ~ ," . . .*v .:_"- - ' -".- . ' .,-,.'..,, . *'. , .. ,. -. '... , -' . - - . •, "-. . .
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Figure 8-23. A realization of Q(w).+c~)



is apparent from this diagram why the use of a curve-fit provides

better results.

Figures 8-25 through 8-27 show comparisons between the

responses of the identified systems computed by different meth-

ods, and the actual response of the bilinear hysteretic system in

case 2. The responses of the identified systems match the
response of the actual system so closely that it is difficult to

distinguish the two responses in these figures. More identified

responses for case 4 are shown in Figures 8-28 through 8-30. The

model responses do not match the actual response as closely when

residual deformation exists in the actual structure since the

models cannot accumulate permanent deformation. However, peak

jresponses in the models match the actual system response quite

well.

~.: ,"~ In this example, noise was added to the forcing function and

response signals; then the system parameters were identified.

The results are summarized in Tables 8.8 and 8.9.

• " TABLE 8.8. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED
FOR CASE 1 WITH TEN PERCENT NOISE TO SIGNAL RATIO

-p4 Method ao al a2 a3 Energy

1 39.17 1.37 11022.0

2 39.17 1.45 0.003 10900.0

3 39.93 1.42 10300.0

4 39.33 2.44 0.022 9497.0

5 34.30 2.98 0.051 11710.0

6 38.44 0.0 1.286 0.0 10929.0

. ,. . o ° " , o o •" . ... •.. . . -,J :,'.." -''".", ,,.,,: :. .-.'i ,': . 5 ; . - '.,', - . - i . .i .' _ , -'. ." - " , .. * " - - -" -" -
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Figure 8-25. The comparison between noise-free
response (solid) and second-order
identified response (dot) for Case 2.
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Figure 8-26. The comparison between noise-free
response (heavy) and third-order iden-

tified response (light) for Case 2
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'-) for Case 2

. . .° - . ... .. . •:- . -.. . . •



102

8.0

.0.

-4.0

08.0

8.0

S -4.0

.. 0

', ~-8.01
*0.0 Time -Sec 50.0

Figure 8-2. Comparison between actual response(ti
(hline) and model (method ) response
(thick line)
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TABLE 8.9. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED

* 1FOR CASE 4 WITH TEN PERCENT NOISE TO SIGNAL RATIO

Method ao al a2 a3 Energy

1 33.27 1.89 7092.0

2 33.27 1.42 0.021 9980.0

! 3 32.02 1.95 6476.0

4 32.02 2.60 0.021 6803.0

5 34.46 2.70 0.043 11400.0

L"  6 32.83 0.0026 1.543 0.011 7016.0

These results show that the parameter identification procedure is

still effective when noise is present.
8.3 Example 3

In this example, a parameter identification problem is

solved using the frequency domain approach. The methods used to

identify the parameters were described in section 8.2, namely

methods I through 6. The same forcing function as illustrated in
Example 3 is used. The only difference in this example is that

the response was simulated by a second-order time varying param-

eter system. Unlike the responses simulated in Example 2, this

' Iexample is a linear system with time dependent stiffness and

damping. The parameters of the system and total energy dissi-

, *. pated are listed in Table 8.10.
.. 4,

TABLE 8.10. SYSTEM PARAMETERS FOR CASE 5

ko = 39.48 co = 1.257
S=- 0.01 a -0.01

Total Energy a 9799.0

The definitions of the symbols are the same as in Equation 5-2.

This case was described in section 8.2 as case 5.

LA
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The displacement response versus time for case 5 is shown in

.lFigure 8-31. The total restoring force versus displacement for

this case is illustrated in Figure 8-32. Note that the major

axis of the loops depicted in the diagram have different slopes.

This occurs because the system stiffness diminishes with time.

I ? .The parameters identified using methods I through 6 together with

the total energy dissipated in the corresponding systems are

shown in Table 8-11.

TABLE 8.11. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED

FOR CASE 5

Method ao al a2 a3 Energy

1 34.70 1.36 9266.0

2 34.70 3.25 0.039 7883.0

3 37.15 1.29 10960.0

4 37.15 2.82 0.031 9074.0

5 34.31 2.97 0.05 11160.0

i 6 37.56 - 0.006 1.23 0.019 9120.2

It is shown that methods 1 through 6 can also be used to identify

model parameters when noise is present. The results obtained

when the measured signals contain noise are shown in Table 8.12

TABLE 8.12. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED
FOR CASE 5 WITH SIX PERCENT NOISE TO SIGNAL RATIO

-. . Method ao ai a2 a3 Energy

* 1 34.70 1.38 9419.0
-' 2 34.70 2.75 0.03 8623.0

3 37.34 1.31 11180.0

4 37.34 2.24 0.021 10280.0

5 34.32 2.49 0.038 11040.0
6 38.30 0.007 1.254 0.025 9245.6

.- . . . ... 9"

* - Ar t...'.--
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Figure 8-30. Comparison between actual response
(thin line) and model (method 6)
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Figure 8-31. Displacement response of second-order
time varying parameter system to forcein Figure 8-15(Case 5)
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Figures 8-33, 8-35, and 8-36 compare the identified system

.5 responses to the response of the actual system. The simulated

and actual responses match quite well in all cases. The model

including time parameters provides the best match. Figure 8-34

shows the total restoring force versus displacement. A change in

-mslope of the major axis of the loops is observed. This behavior

matches the real system behavior shown in Figure 8-32.

8.4 Example 4

In this example, a two degree-of-freedom (2DF) system is

considered and its parameters are identified by using the proce-

dure outlined in Chapter 6. The system is a shear-beam lumped

mass structure as shown in Figure 6-1.

The parameters of the input excitation are listed in Table

8.13. The notation for the parameters is the same as in previous

* -examples. A typical forcing function generated using these

parameters is shown in Figure 8-37. In some of the following

analyses noise is contained in the measured data. An input with

noise to signal ratio of eight percent is shown in Figure 8-38.

TABLE 8.13. PARAMETERS OF THE FORCING FUNCTION

= 0.1 N = 50 cj - 10.0 j =1...,50

At - 0.05 n = 1024 wj = (1.6 + 0.04 j)w, j=1,...,50

The response signals used to represent the measured signals

, were generated by computer program BLNMDF. BLNMDF generated the

displacement, velocity, and acceleration response of a bilinear
MDF system. First, the response of a linear system (case 1) was

computed. Then, a nonlinear response was computed for analysis

in case 2.

The structural parameters used in cases 1 and 2 in this

numerical example are given in Table 8.14. The numerical sub-

scripts on the parameters refer to the story and mass nunhprs-

Lii

. . . . * - o.- . ° .... . . . . - . . . ° - - •. . -
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Figure 8-32. Total restoring force versus displace-
ment for time varying parameter system
(Case 5)
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Figure 8-33. The comparison between measured response
(light) and the identified response
(dark) by method 6 for Case 5
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Figure 8-34. Total restoring force versus displace-
ment after the identification by using
method 6 for Case 5.
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Figure 8-35, Comparison between measured response
(heavy) and second-order identified
response (light) using method 3 for
Case 5.
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Figure 8-36. Comparison between measured response
(heavy) and the third-order response

-- (light) using method 4 for Case 5.
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TABLE 8.14. SYSTEM PARAMETERS (cases 1 and 2)
* ki = 39.48 ci = 1,257 m = 1.0

k2 = 39.48 C2 = 1.257 m = 1.0

.. * At = 0.05 n =1024 Ydi = 1.2, Yd2 = 1.0 (for case 2)

in the 2DF system. Since yielding only occurs in case 2 the

yield level parameters are only used in case 2.

The displacement response versus time for case 1 is plotted
in Figures 8-39 and 8-40. Note, the displacement is relative

-* ~displacement with respect to each degree-of-freedom. The rela-

tive displacement histories for case 2 are shown in Figures 8-41

and 8-42. Figures 8-43 and 8-44 show the measured signals with

ten percent noise to signal ratio corresponding to the actual

response measurements in Figures 8-41 and 8-42.

The energy dissipated by the structure during the structural
responses of cases 1 and 2 are presented in Table 8.15. Energy

quantities dissipated in both first and second stories are

given. Note that similar amounts of energy are dissipated in the

linear and nonlinear structures.

TABLE 8.15. ENERGY DISSIPATION

. First Story Second Story Total

Case 1 (Linear) 527.80 53.00 580.80

T Case 2 (Nonlinear) 447.20 105.10 552.30

" The program MDFID performs a frequency domain parameter

identification for the second and third order linear model. It

accepts both an input signal from FORCE and response signals from

BLNMDF. The white noise signals are added to the corresponding

input data whenever noises are included in the analysis. It

should be noted that when noise signals are included in the

responses, a different signal is added for each degree-of-

feo

:'" - ': -- '-""2 :: :" " " - ' " - ". ". " .''" " ' -' . . .- "2- - -. . . - -- . ... , , - - •-. " -" - *" "-. . . . ..
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A' Figure 8-39. Relative displacement response
between base and mass 1 in 2 DF
structure. Case 1 (linear)
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Figure 8-40. Relative displacement response
between mass 1 and mass 2 in 2DF
structure. Case 1 (linear)
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Figure 8-41. Relative displacement response
between base and mass 1 in 2DF
structure. Case 2 (nonlinear)
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* Figure 8-43. Relative displacement response
between base and mass 1 in 2DF

structure plus 10 percent noise.

(corresponding to Figure 
8-41)
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Li Figure 8-44. Relative displacement response
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MDFID performs the necessary Fourier transforms and other

Idata operations. Then the parameter identification is executed.

Once the parameters are known, the energy dissipated in each

degree-of-freedom is calculated.

The parameters identified using the program MDFID are listed

in Tables 8.16 through 8.19. The system parameters identified

for case 1 (linear response) where no noise is included in the

measured signals, are given in Table 8.16. The system parameters

S- identified for case 1, where noise is included in the measured

signals, are given in Table 8.17.

TABLE 8.16. IDENTIFIED PAANETERS AND ENERGY DISSIPATED

FOR CASE 1 WITHOUT NOISE

Convergence Criteria = 4 percent

order ki k2 ci C2 al a2 Ei E2 ET

second 41.79 42.10 1.29 0.90 -- -- 570.9 42.17 613.0

. ithird 41.30 43.21 1.76 0.605 0.0093 0.0014 634.5 29.66 664.2

TABLE 8.17. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED

FOR CASE 1 WITH NOISE

Convergence Criteria = 4 percent

order kj k2  ci c2 al a2 El E2  ET

second 44.37 38.4 1.30 0.90 -- -- 563.1 56.22 619.3

third 43.45 39.07 1.38 0.96 0.0005 0.0037 592.7 42.80 635.5

The system parameters identified for case 2 (nonlinear)

where no noise is included in the measured signals are given in

Table 8.18. The system parameters identified for case 2, where

noise is included in the measured signals, are given in Table

8.19. Each table lists a convergence criterion used in obtaining

the parameter estimates. These quantities reflect a limit on the

4# - -

, -

.' :)

.4 *.d
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change in parameter value required in the computation before the

U Jidentification computation is terminated. The smallest conver-

gence criteria values yield the most accurate results.

TABLE 8.18. IDENTIFIED PARAMETERS AND ENERGY DISSIPATED

FOR NONLINEAR CASE (CASE 2) WITHOUT NOISE

*1. "Convergence Criterion = 4 percent

. "- order kj k2 ci C2 al a2 El E2 ET

second 29.04 33.87 1.81 1.81 . . 861.3 81.43 948.73

• " third 29.07 32.30 2.11 1.89 0.0082 0.0048 676.10 140.60 816.70

TABLE 8.19. IDENTIFIED PARAMETERS AND ENERGY DISSIPATEDg FOR CASE 2 WITH NOISE

Convergence Criterion = 2 percent

order ki k2 cl c2 al a2 El E2 ET

second 35.33 19.91 1.21 1.38 -- -- 434.8 142.6 577.3

third 35.67 18.671 1.20 1.31 0.0033 0.001 397.1 133.2 530.3

Comparisons among Tables 8.14, 8.16 and 8.17 show that the

: 1parameters obtained using the program MDFID provide good esti-

mates of the actual system parameters. The structural responses

predicted using the second and third order models are shown in

Figures 8-45 through 8-48 where they are compared with the actual

responses. Model responses and energy dissipated were computed

using computer program HDMDF. Figure 8-45 shows the relative

" displacement response between the base and mass 1 for the second

order model (parameters from Table 8.16) and the actual responseV. (Figure 8-39). The responses are almost identical. Figure 8-46
shows the corresponding relative displacement responses between

masses 1 and 2. Figure 8-47 shows the relative displacement
-" response between the base and mass 1 for the third order model

L(parameters from Table 8.16) and the actual response (Figure

8-39). The responses are almost identical. Figure 8-46 shows

a . . . . . . . . . . .
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the corresponding relative displacement responses between masses

1 and 2. Figure 8-47 shows the relative displacement response

between the base and mass 1 for the third order model (parameters

from Table 8.16) and the actual response (Figure 8-39). Again,

responses are almost identical. Figure 8-48 shows the corres-

ponding relative displacement responses between masses 1 and 2.

The energy dissipated during structural response was com-

puted using the second and third order models in program HDMDF,
using the parameters identified in the presence of no noise and

the parameters identified in the presence of noise. The results

are given in Table 8.16 and 8.17. In both cases good agreement

with the actual energy dissipated is found.

Comparison among Tables 8.14, 8.18 and 8.19 show that the

parameters obtained using the program MDFID are changed. This

change reflects the system nonlinearity. The structural

responses predicted using the second and third order models for

case 2 are shown in Figures 8-49 through 8-52 where they are

compared with the actual nonlinear responses. Model responses

and energy dissipated were computed using computer program

HDMDF. Figures 8-49 and 8-50 show the relative displacement

responses for the second order model (parameters from Table 8.19)

and the actual responses (Figures 8-41 and 8-42). The model

responses do not match the actual response as closely when resid-

• -ual deformation exists in the actual structure since the models

cannot accumulate permanent deformation. However, peak responses

in the model match the actual system response quite well. Fig-

ures 8-51 and 8-52 show the relative displacement responses for

the third order model (parameters from Table 8.19) and the actual

responses (Figures 8-41 and 8-42). Again, responses are not

closely predicted by the model. However, peak responses of the

model match the actual response very well.
"II



121
~Li

0

Ec.

a)o
"o a)

1- 0~j
ra

w

U- En)4

a) u to

OC

C.. 
im 

t

4C

0)

C-I-

UL~~ LL~aPdSL



F123

4-J

*i 0 0)

>V 4A

0 4r
CL-to

C. S- cc

0) S-.p LnO

CD OE%

C>J
CD CD OED

ui~~ 4umoelsi



124

In

=3 .0

41

r_ 41'

L.U

-~4 . 0 C.~
CA d

I EG
d=r ait

2 4Ur_

s-- IMP%-

- ; C~

U L J8UJ3ejSn



ON

125

0 4

"- I t

0 (

I Lc)

Lcn

U 4ubw:)00ds3



126

Consideration of the entire collection of results shows that

the third order model provides the best simulation of nonlinear

" system behavior when the criteria of peak response and energy

dissipated are used.
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CHAPTER 9

" I SUMMARY AND CONCLUSIONS

": The objective of this study was to develop approximate

linear models for the simulation of inelastic system response and

the measurement of damage accumulation in a structure. It was

assumed that energy dissipated is related to the accumulation of

damage. The model parameters were identified; then the energy

dissipated during a strong motion was calculated. The displace-

ment response and the energy dissipated in each model were corn-

pared with the displacement response and energy dissipated in the
actual structure.

Three basic models were considered in this study. These are

second and third order linear models with constant coefficients,

*- and a second order linear model with time-varying parameters.

The parameters of the models were estimated using two basic

* 3 approaches, namely time domain and frequency domain approaches.

The time domain approach was first introduced to estimate the

model parameters by using the least squares method through which

the modeling error is minimized with respect to the measured

p data. One reason for not using the time domain approach through-

out this investigation is that the parameters identified using

the time domain approach are inaccurate when noise signals are

present.

Then, the frequency domain approach was used to identify the
model parameters. In this approach, both analytical and search

techniques were applied to find the system parameters. A good

set of initial guesses of the parameters was an important concern

when the search technique was used to execute the identification

process.

'4 -".- -
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Several numerical examples were solved, and some of them are

summarized. Experience obtained in solving the numerical exam-

ples lead to the following conclusions.

(1) Linear and nonlinear hysteretic SDF systems can, in

some respects, be accurately modeled using second-and
third-order linear differential equations with constant

coefficients, and a second-order linear differential

equation with time-varying coefficients. Specifically,

the models provide accurate simulation when displace-

ment response and energy dissipated criteria are used.

(2) A direct, time domain approach can be used to identify

model parameters when the force input and acceleration

response measurements are not noisy.

(3) The frequency domain approach can be used to identify

model parameters of all three models when the force and

i response measurements are noisy.

(4) The second order model with time-varying coefficients

provides the best simulation of system response and

energy dissipated among the three models considered.

(5) The parameters of both single-degree-of-freedom (SDF)

and multi-degree-of-freedom (MDF) systems can be iden-

tified. The numerical examples show that one and two
" degree-of-freedom systems can be identified. For the

• -. model presented in Chapter 6, it is anticipated that

some difficulty would exist in identifying the param-

:-:. eters of a system with three or more degrees of freedom

due to the number of parameters involved.

(6) The energy dissipated in a structural system is related

to system damage.
.. ' .. ,
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While the procedure developed in this investigation provides

means for the simulation of response and the estimation of damage

in inelastic structures, some improvements can be made. The

systems considered in this study are one and two-degree-of-

freedom; future investigations should include many degree-of-

- freedom structures. The models used in this study do not permit

the accumulation of plastic deformation; future investigations

should consider models that allow plastic deformation to accumu-

late. The tests that are summarized in Chapter 7 show that

material damage is related to energy dissipated; future experi-
.-:, :~ments should be performed, and a mathematical model characteriz-

ing the results should be developed. Finally, analyses should be

performed to establish the spacial distribution of energy dissi-

pated in actual structural members.

.
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C *PROGRAM "BILIN"

-C SN: EXCITATION NOISE
C RN: RESPONSE NOISE

,. :9C MAXIMUN DISPLACEMENT EAQUL TO 6.7
C INDEX=1 MEANS NOI SE PRESENTED

IM C
DIMENSION SF(1024),DD(1024),SN(1024),RN(1024)
DIMENSION AA(1024),RESF(1024),SK1(1024),SPI(1024)
CALL OPSYS('ALLOC','RH1',1O)

-. CALL OPSYS('ALLOC','FDI',15)
CALL OPSYS('ALLOC','RH2',25)
I NDEX 1

' N=1024
5M=1.0
SC=1 .256637
SK=39.48
YSTIO0.O
YDIS=4.0
DT=0.05
READ(1O,50) (SF(I),SN(I),I=1,N)
READ(25..55) (RN(I),I=1,N)
CALL BILIN(SF,SC,SM,SK,YSTI,YDIS,DT,N,DD,ENED,SPI)
IE(INDEX.EQ.1) GO TO 45S DO 12 I=1,N
T=DT*(I-1)

* - RESF(I)=SE(I)-SM*AA(I)
* WRITE (15,50)T, DD(I)

12 CONTINUE
GO TO 60

*45 DO 40 I=1,N
T-DT*(I-1)
SF(I)=SF(I)+SN(I)
DD (I )=DD (I )+RN (I)

40 WRITE(15,50)T,DD(I)
50 FORMAT(2E12.4)

-"55 FORMAT(E12.4)
60 WRITE(6,*)ENED,ENED1,ENED2

STOP
END

C
C SUBROUTINE FOR GENERATING THE BILINEAR
C HYSTERETIC SYSTEM.
C C7 :DAMPING
c C M7: MASS
C SK7: STIFFNESS

C A7 : YIELDING STIFFNESS
-C V7 : YIELDING DISPLACEMENT

C D9 :TIME INCREMENT
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C V :OUTPUT DISPLACEMENT
C Vl OUTPUT VELOCITY
C VO :OFFSET DISPLACEMENT

*C V2 :OUTPUT ACCELERATION
C ENED:ENERGY DISSIPATED
C SPI:SPRING RESTORING FORCE
C ENEDI:TOTAL SPRING ENERGY DISSIPATED
C ENED2:TOTAL DAMPING ENERGY DISSIPATED
C

mp SUBROUTINE BILIN(F,C7,SM7,SK7,A7,V7,D9,N,V,ENED,SPI)
-: DIMENSION V(N),VO(1024),V1(1024),V2(1024),F(N)

DIMENSION SPI(1024)
U7=SK7*V7
SK9=1.0-A7/SK7

C,
C INITIALIZE VARIABLES
C

V(1)=0.
VO (1) =0.

V2 (1 )=F (1) /SM7

C START THE RESPONSE CYCLE
C

Q1=6. O*SM7/D9**2
Q2=3. O*C7/D9
Q3=6. O*M7/D9--p Q4=3.0*5147
Q5=3. O*C7
Q6=0.5*D9*C7
Q7=3.0/D9
Q8=3 .0
Q9=0.5*D9

K 5K8=SK7
NM=N-1
ENED0. 0

2..:*-.ENED1=0.0
* ENED2=0.0
v ~DO 1199 I=1,NM

* -: U1=Q1+Q2+SK8
U2=Q3*Vi(I)+Q4*V2(I)
U3=Q5*Vl(I)+Q6*V2(I)
V5=(F( I1)-F( I)+U2+U3)/Ul
V6=Q7*V5-Q8*Vi (I ) .Q9*V2 (I)
V ( Ii)=V (I )+V5
VI(Il)=V1(I)+V6

C
C COMPUTE THE STIFFNESS AT T+DT
C

XI=A7*(V(Ii)-V7)+U7

Lia
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X2=A7*(V(Il)+V7)-U7
IF(XO.GT.X1)GO TO 1150
IF(XO.LT.X2)GO TO 1160

* SK8=SK7
VO (il) V0 (I)
GO TO 1170

1150 IF (V1(I1).GT.O.O)SKB=A7
* IF (V1(I1).LE.0.0)SK8=SK7

- GO TO 1170
1160 IF (V1(I1).LT.0.0)SKB=A7

IF (V1(I1).GE.0.0)SK8=SK7

110V0(I1)=SK9*(V(I1)+V7)

ENED=ENED+D9*0.5*(V1(I)*(F(I)-SM7*V2(I))+V1(I1)*

ENED2=ENED2+D9*0.S*(V1(I)*C7*V1(I)+V1(I1)*C7*V1(I1))
1199 CONTINUE

RETURN
END

C
C

* C
C PROGRAM "TIMEVA"*

U C
C SOLVE FOR THE SECOND O.D.E.
C (TIME VARIED PARAMETERS)
C SN: INPUT NOISE
C YN:RESPONSE NOISE
C ALPHA:TIME VARIED COEFFICIENT FOR K

UC BATA:TIME VARIED COEFFICIENT FOR C
C

READ(5,*) COAKO,ALPHA,BATA
.4. CALL OPSYS('ALLOC','RHI',15)

CALL OPSYS('ALLOC','RH3',65)
CALL OPSYS('ALLOC','RH2',13)

* *.*CALL OPSYS('ALLOC','ID3',67)
DIMENSION DY(2),Y(2),F(42),SN(1024),YN(1024)
DIMENSION SF(1024),TS(1024),S(1024),INDEX(1024)
DIMENSION Y3(1024),V(1024)
EXTERNAL SPLINE
COMMON /ARRAY/ TS, SF,S. INDEX
NTS=1024
DT=0.05
READ(15,8) (SF(I),SN(I),I=1,NTS)
READ(13,33) (YN(I),I=1,NTS)
DO 2 I=1,NTS

La TS(I)=DT*(I-1)
2 CONTINUE
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CALL SPCOEF(NTS,TSI SF, S.INDEX)
SM=1.O
N=2
TT=NTS *DT

T(=O.

Y (2) =0.0
ENER=0. 0

10 L=3
M=O

50 CALL RUNGE(T,DTNY,DY,F,LM,J)
IF(M-1)75.,1O,75

100 GO TO (100,200,999),L
10FQ=-FF(T)

DY (1) =Y (2)
4 ~~DY(2 )=-(1.+ALPHA*T) *AjKO*Y(l1)-(1. +BATA*T) *CO*Y(2 )+FQ

GO TO 50
200 I=T/DT+1.1

Y3(I)=(1.+ALPHA*T)*AKO*Y(1)+(l.+BATA*T)*CO*Y(2)
V(I)=Y(2)

g IF((I-1).EQ.O) GO TO 111
* ENER=ENER+DT*0.5*((Y3(I)*V(I))+.(Y3(I-1)*V(I-1)))

GO TO 250
Ill ENER=DT*O.5*(Y3(1)*V(1))

C
C NOISE CASE
C
C 112 SF(I)=SF(I)+SN(I)
C YKK=Y(1)+YN(I)

250 WRITE(65,800)Y(1),Y3(I)
IF(T-TT)260, 999, 999

260 GO TO 50
800 FORMAT(2E12.4)

8 FORMAT(2E12.4)
33 FORMAT(E12.4)
999 WRITE(6,*) ENER

STOP
END

C
C REAL FUNCTION FE
C

FUNCTION FF(T)
DIMENSION TT(1024),FT(1024),SS(1024),INDE(1024)
COMMON /ARRAY/ TT,FT,SS,INDE

QA=SPLINE(NTT,FT,SS, INDE,T)
FF=QA
RETURN
END

C
C SOLVING N-TM ORDER ODE
C
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SUBROUTINE RUNGE(TDT,N,Y,DY,F,LMJ)
DIMENSION DY(2),Y(2),F(42)
GO TO (100,110,300),L

100 GO TO (101,110) ,IG
101 J=1

L=2
DO 106 K =1,N
KI=K+3*N
K2=KI+N
K3=N+K
F(K1)=Y(K)
F(K3)=F(KI)

106 F(K2)=DY(K)
GO TO 406

110 DO 140 K=1,N
K1=K
K2=K+5*N
K3=K2+N
K4=K+N

-.GO TO (111,112,113,114),J
111 F(KI)=DY(K)*DT

Y(K)=F(K4)+.5*F(KI)
GO TO 140

112 F(K2)=DY(K)*DT
GO TO 124

113 F(K3)=DY(K)*DT
GO TO 134

. 114 Y(K)=F(K4)+(F(KI)+2. *(F(K2)+F(K3) )+DY(K)*DT)/6.
GO TO 140

124 Y(K)=.5*F(K2)
Y(K)=Y(K)+F(K4)
GO TO 140

134 Y(K)=F(K4)+F(K3)
S140 CONTINUE
"-$ GO TO (170,180,170,180),J

170 T=T+.5*DT
180 J=J+l

IF(J-4)404,404,299
299 M=l

174 GO TO 406
300 IG=1

GO TO 405
404 IG=2
405 L=1
406 RETURN

END
C
C
C
C * PROGRAM " URAND" *
C
C

Ll

.'2 "oo -. " '. , . " " . . .
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C THIS PROGRAM IS FOR GENERATING THE RANDOM SIGNAL
C

CALL OPSYS('ALLOC','RH2',66)
- CALL OPSYS('ALLOC','RH1',65)
* CALL OPSYS('ALLOC',2RH4',77)

REAL*8 URAND
REAL S(1024),SS(1024),DS(1024),T(1024),TPF(1024)

- REAL EPS(1024),SF(1024),OUN(1024),RENOI(1024)
DIMENSION PS(1024) ,IND(1024) ,PHI(1024)
DOUBLE PRECISION FD(1024)
EXTERNAL URAND

C INITIALIZATION
C WHEN INDEX=1 SHOWS NO DERIVATIVE FOR FORCE,

~* OTHERWISE WILL GO TO DERIVATIVE INCLUDING NOISE

C RATIO :NOISE/SIGNAL RATIO
C S(I) :FORCE
C DS(I) :DERIVATIVE OF THE FORCE
C SF(I) :FORCE + NOISE
C FD(I) :DERIVATIVE OF (FORCE+NOISE)
C ZETA :DAMPING OF THE SYSTEM
C ALPHA :DECAY RATIO
C NT :TOTAL NUMBER OF POINT
C FN :NATURAL FREQUENCY
C NF :NUMBER OF POINT IN THE FREQUENCY BAND

* INDEX=-OU RATIOO0.0036
ZETA=O. 1
DTO0.05
NF=50

* NT=1024
NN=NT+ 1NSE=
ALPHA=O. 1
C=10.0
PI=4. ODO*DATAN( 1.ODO)
FN=2. *PI

C
C CALCULATE THE FREQUENCY AND TIME
C

F1=FN-(2.*ZETA*FN)
IF(F1.LT.O.O) F1=O.O

* F2=FN+(2. *ZETA*FN)
L. FB=F2-F1

DF=(F2-F1 )/NF
F3=F1- (DF/2 .0)

C
C S1:VARIANCE OF THE FORCE NOISE
C S2:VARIANCE OF THE OUTPUT NOISE

C
Sl1F*RATIO*C*C/(2. *DF)

Ui
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S2=PI*RATIO*C*C/(8. *DF*(FN**3)*ZETA)
DO 8 K=1,NF
TPF(K)=F3+ (K*DF)
PHI (K)=2. *PI*UPND(NSEED)

8 CONTINUE
DO 9 J=1,NT
T(J)=(J-1)*DT

9 CONTINUE
C
C GENERATE THE EXCITATION AND ITS FIRST DERIVATIVES
C

DO 11 J=1,NT

SS(1)0O.
DO 11 K=1,NF
S(J)=S(J)+1. *C*COS(TPF(K)*T(J)-PHI(K))
SS(J)=SS(J)+l.*C*TPF(K)*SIN(TPF(K)*T(J)-PHI(K))

11 CONTINUE
DO 12 J1I,NT
S(J)=S(J)*EX(ALPHA*T(J))
DS(J)=-SS(J)*EXP(-ALPHA*T(J))-S(J)*ALPHA

12 CONTINUE
C
C GENERATE THE RANDOM EXCITATION INCLUDES NOISE.
C OUN:FORCE NOISE,EPS: RESPONSE NOISE.
C

CALL NOISE(OUN,NN,S1,1)I CALL NOISE(RENOI,NN,S2,2)
CALL NOISE(EPS,NN,52,NSEED)
IF(INDEX.EQ.1) GO TO 40

C FD(1)=O.O
C DO 15 I=2,NT
C FD(I)=DS(I)+(OUN(I+1)-OUN(I-1) )/(2.O*DT)

-. PC 15 CONTINUE
35 DO 38 J=1,NT
38 WRITE(65,22) S(J),DS(J)

GO TO 18
40 DO 42 I=1,NT

WRITE(77,21)RENOI (I)
WRITE(66,21)EPS( I)

42 WRITE(65,13)S(I),OuN(I)
13 FORI4AT(2E12.4)
17 FORMAT(9X,'TIME',1 11X,'FORCE',1X,'FIRST DERIVATIVE',/)
21 FORMAT(1E12.4)
22 FORMAT(2E12.4)
18 STOP

END
C

SUBROUTINE NOISE(DPS,N, 52,NSEED)
C
C

I'C THIS SUBROUTINE GENERATES A SEQUENCE OF WHITE NOISE

Lo~
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C IT'S LENGTH IS N, MEAN ZERO, VARIANCE S2
C

REAL*8 IJR&ND
REAL X(12),DPS(N)
C=SQRT( S2)
DPS(1)=O.O
DO 2 I=2,N
DPS(I)=O.O
DO 1 J=1,12
X(J)=URAND(NSEED)

1 DPS(I)=DPS(I)+X(J)
2 D)PS(I)=(DPS(I)-6.0)*C

RETURN
END
REAL FUNCTION URAND*8(IY)
INTEGER IY

C
C URAND IS A UNIFORM NUMBER GENERATOR BASED ON THE
C THEORY AND SUGGESTIONS GIVEN IN D.E. KNUTH (1.969).
C

INTEGER IA, IC, ITWO,M2,M,MIC
DOUBLE PRECISION HALFM
REAL S
DOUBLE PRECJ.SION DATAN,DSQRT
DATA M2/O/, ITWO/2/
IF (M2 .NE. 0) GO TO 20

CSC IF FIRST ENTRY, COMPUTE MACHINE INTEGER
C WORD LENGTH.
C

M I
10 M2 =M

M =ITWO*M2
*IF (M GT. M2) GOTO 10

HALEM = M2
C
C COMPUTE MULTIPLIER AND INCREMENT FOR
C LINEAR CONGRUENT IAL METHOD
C

:71 IA = 8*IDINT(HALFM*DATAN(1.DO)/8.DO) + 5
IC = 2*IDINT(HALFM*(O.5DO-DSQRT(3.DO)/6.DO)) I
MIC = (M2 - IC) + M2

C
C S IS THE SCALE FACTOR FOR CONVERTING TO
C FLOATING POINT.
C

* .. S = 0.5/HALEM
* . C

C COMPUTE NEXT RANDOM NUMBER
C

20 IY =IY*IA
U C
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C THE FOLLOWING STATEMENT IS FOR COMPUTERS WHICH
C DO NOT ALLOW INTEGER OVERFLOW ON ADDITION
C

IF (IY .GT. MIC) IY = (IY - M2) - M2 S
C

IY = IY + IC
C
C THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE
C THE WORD LENGTH FOR ADDITION IS GREATER THAN
C FOR MULTIPLICATION
C

IF (IY/2 .GT. M2) IY = (IY - M2) - M2
C
C THE FOLLOWING STATEMENT IS FOR COMPUTERS WHERE
C INTEGER OVERFLOW AFFECTS THE SIGN BIT
C

IF (IY .LT. 0) IY = (IY + M2) + M2
URAND = FLOAT(IY)*S
RETURN
END

C
c
C

C
C - PROGRAM " BLNMDF" *
C

* C
C THIS PROGRAM GENERATE THE MDF BILINEAR
C HYSTERETIC STRUCTURE RESPONSE
C
C N : NUMBER OF DEGREE OF FREEDOM
C NT NUMBER OF TIME STEP
C DT TIME INCREMENT
C MC(I) MASS FOR EACH DEGREE OF FREEDOM
C CC(I) : DAMPING FOR EACH DEGREE OF FREEDOM
C KC(I) : STIFFNESS FOR THE SYSTEMS
C AC(I) : YIELD STIFFNESS
C ZOI(I): INITIAL DISPLACEMENT
C ZOF(I): FINAL DISPLACEMENT
C Z1I(I): INITIAL VELOCITY
C ZIF(I): FINAL VELOCITY
C Z2F(I): FINAL VELOCITY
C PSF(I): FINAL PERMANENT DISPLACEMENT
C

CALL OPSYS('ALLOC','MDF1',10)
CALL OPSYS( 'ALLOC', 'MDF2' ,20)
CALL OPSYS('ALLOC','RH2',23)
CALL OPSYS('ALLOC','RH2',25)
CALL OPSYS('ALLOC','RH3',40)
CALL OPSYS('ALLOC','RH4',46)DIMENSION DUMV1(2),DUMV2(2),DUMMI(2,2) ,DUMM2(2,2)
DIMENSION DLO(2),DLI(2),RU(2),RL(2),PSI(2),YD(2)

|
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DIMENSION CC(2),AC(2),Q(2),PSF(2),FF(1o24),RN(1o24)
DIMENSION CM(2,2) ,RV(2),DZO(2),Dz1(2) ,DZ2(2)

* DIMENSION A1(2,2) ,A2(2,2) ,A3(2,2) ,A4(2) ,A5(2)
DIMENSION AKM~C(2) ,AMC(2) ,AKC(2) ,AMM(2,2) ,AKM(2,2)
DIMENSION Al1(2,2) ,A22(2) ,ZM(2) ,ZS(2) ,ZN(2) ,ZT(2)
DIMENSION A11I(2,2),ENEDJ.(1O24),ENED2(1024),DN(1024)
DIMENSION Z1F(2),Z2F(2),FN(1024)

C
-C INOISE=1 MEANS NOISE INCLUDEDal

C
INOISE=O
N=2
NT=1024
DT=0.05
AMC(1)=1.0
AMC(2)=1.O
CC(1)=1.256
CC(2)=1.256
AKC(1)=39.48
AKC (2) =39.48
AC(1)=O.O
AC (2) =0.0
ZOI(1)=O.O
ZOI(2)=O.O
Z1I(1)=0.O

* ZII(.2)=O.O

YD(2)=1.0
N1=NT-1
ENED1(1)=0.O
ENED2(1)=0.O

C
C READ THE FORCE VECTOR I
C FN(I):INPUT NOISE
C RN(I):RESPONSE NOISE
C

READ(25,35) (RN(I) ,FNI=1,NT)
READ(26,35)(DN(I),I=1,NT)
FRA(2E12.)NI,=NT

35 FORMAT(E12.4)

DO 30 I=1,NT
F(I,1)=O.0

30 F(I,2)=FF(I)
C
C FORM THE MM AND CM MATRICES
C

DO 1111 11I,N
* *.DO 1111 J1I,N
I., AKM(I,J)=O.

AMM (I, J )=0.
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1111 CM(I,J)0O.
C
C FORM MASS MATRIX

* C -
DO 1112 11I,N

1112 AMM(I,I)=AMC(I)
C
C FORM DAMPING MATRIX
C

- DO 1113 1=1,N .
IP=I+1
CM (I, I )CC (I)
IF(I.EQ.N)GO TO 1113
CM(I, I)=CM(I, I)+CC(IP)
CM( I, IP)=-CC(IP)
CM( IP, I )-CC( IP)

1113 CONTINUE
C
C FORM CONSTANTS VECTORS AND MATRICES
C FOR ITERATION.

CD1=DT/2.O
CD2=6. O/DT
CD3=6. O/(DT**2)
CD4=3. O/DT
D1=DT/2.0

* D2=DT*DT/6.O

DO 1119 I=1,-N
A4(I)=AC(I)/(AKC(I)-AC(I))
A5(I)=(AKC(I)-AC(I) )/AKC(I)
DO 1119 J1I,N
A1( I,J)=AMM( I, J)+D1*CM( I,J)
A2(I,J)=DT*CM(I,J)

1119 CONTINUE

C
C INITERSE THE ASDROS E MATRIXS
C

DO 1130 I=1,N
IP=I+1
AKM(I,I)=AKC(I)
IF(I.EQ.2) GO TO 1130 .-

AKM( I, I )AKM( I, I)+AKC( IP)
AKM(I, IP)=-AKC(IP)
AKM( IP, I)=-AKC( IP)

1130 CONTINUE

L C SET INITIAL CONDTTIONS
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L

C
DO 1132 I=1,N
ZOI(I)0O.

* Z1I(I)0O.
1132 PSI (I)0O.

DO 1133 11I,N
1133 DUMV1(I)=F(1,I)

C
C FIND INITIAL ACCELERATION Z21

- C
CALL MVM(A3,DUMV1,Z21,N)

C
C WRITE INITIAL VALUES
C
C WRITE(6,3)

*T=0.0
WRITiE(40,100) FF(1)
WRITE(1O, 14) (ZOI( I),I11,N)
WRITE(20, 14) (PSI (I), I=1,N)

C
C START THE RESPONSE COMPUTATION
C

DO 8999 1ND1I,N1
T= IND *DT

C
C COMPUTE DZ2

C O12 =,
DO 1121 11I,N

* 1121 DUMM1( I,J)=A1( I,J)+D2*AKM( I,J)
CALL MATINV(DUMM1,DUMM2,N)
DO 1212 I=1,N
DO 1212 J=1,N

1212 DUMMI(I,J)A2(I,J)+D3*AKM(I,J)
CALL MVM(DUMMl,Z21,DUMV1,N)
DO 1213 I=1,N
DO 1213 J1I,N

1213 DUMMI(I,J)=DT*AKM(I,J)
CALL MVM(DUMM1,Z11,DUMV2,N)
DO 1214 I=1,N

1214 DUMV1(1)=-(DUMV1(I)+DUMV2(I))+
+(F(IND+1, I)-F(IND, I))
CALL MVM(DUMM2,DUMV1,DZ2,N)

C
4 -- C COMPUTE DZ1 AND DZO

C
DO 1221 I=1,N

* . DZ1(I)=DT*Z2I(I )+DZ2(I)*D1
1221 DZO(I)=D3*Z2I(I)+D2*DZ2(I)+DT*Z1I(I)

* C C

- -C COMPUTE ZIF AND ZOF
IS C
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CLO10 =,

C DO 100 J=1,N
C 100 A100I J=AK , +D* (IJ)C4C(IJ
C DO 110 I=1,N ,)C3*M(,)CD*MIJ
C ZM(11 I=)D*1I I)+ 0Z I
C ZS( I)3 .0*Z1I (I )+CD1*Z2I (I)
C 110CONINUE*III+DIZII
C 10CALNTINUE ,ZZN
C CALL MVM(CM,Z,Z,N)
C DOA12 11(C,NSZTN
C 120 A2I=I1, I-(NI+ I+TI
C C20ALL MATFIN(A1,A11FI,) ZNIZT )
C CALL MVM(AI,A2,DZ,N)
C DOA14 11(A, 2,ZON
C 140 D140 I=D*Z(I -,1I( ND1ZII

C10DO 1231 11,N )-.*ZI()CD*2II
DO123 I)=1( +D1I

121ZOF(I)=ZOI(I)+DZO(I)
C21ZFI=O()DOI
C COPTTEENOFSEKMMTI
C COPTTHENOFSEKMMTI

DL()ZF1
DL1(1)=Z1F(1)
IF1(N.1)GO TO 124
DFNE1G O 1245
DLO 1241F I )-OF(-1

121DL1(I)=Z1F(I)-Z1F(I-1)

1245 CONTINUE
DO 1251 I=1,N
RU(I)=AKC(I)*(A4(I)*PSI(I)+YD(I)) :

1251 RL(I)=AKC(I)*(A4(I)*PSI(I)-YD(I))
DO 1272 I=1,N
QCC=AKC(I)*(DLO(I)-PSI(I))

N IF(QCC.GT.RU(I))GO TO 1258
IF(QCC.LT.RL(I))GO TO 1265
AKMC (I )=AKC (I)
PSF( I)=PSI (I)
GO TO 1271

1258 IF(DL1(I).LE.O.)GO TO 1260
AKMC (I )=AC (I)
GO TO 1261

1260 AKMC(I)=AKC(I)
1261 PSF(I)=A5(I)*(DLO(I)-YD(I))

GO TO 1271
1265 IF(DL1(I).GE.O.)GO TO 1267

AXMC ( I )AC ( )
GO TO 1268

1267 AKMC(I)=AKC(I)
1268 PSF(I)=A5(I)*(DLO(I)+YD(I))
1271 Q(I)=AKC(I)*(DLO(I)-PSF(I))
1272 CONTINUE

DO 1281 J=1,N

................ . . . . . .
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AKM (J, J )=AXMC (J)
IF(J.EQ.N)GO TO 1281
AKI4(J, J)AKM~(J,J)+AKMC(JP)U AKM(J,JP)=-AXMC(JP)
AKM(JP,J)=-AKMC(JP)

121CONTINUE

C COMPUTE THE RESTORING FORCE VECTOR
C

DO 1291 1=1,N
RV(I)=Q(I)
IF(I .LT.N)RV(I )=RV(I)-Q(I+1)

1291 CONTINUE

C COMPUTE Z2F
C

CALL MVM(CM,Z1F,DUMV1,N)
DO 1311 11I,N

1311 DUMV2(I)=F(IND+1..I)-DUMV1(I)-RV(I)
CALL MVM(A3,DUMV2,Z2FN)

C
C PRINT THE RESULTS
C
C WRITE(6,3)

IF(INOISE.NE.1) GO TO 555
ZNOISE=ZOF( 1)+RN( IND+1)I YNOISE=ZOF(2)+DN(IND+1)
WRITE(1O, 14)ZNOISE,YNOISE
YF=FF(IND+1)+FN(IND+1)
WRITE(40,100)YF
GO TO 558

555 WRITE(1O,14)ZOF(1),ZOF(2)
* WRITE(40,100)F(IND+1,2)

* *558 WRITE(20,14)(PSF(I),I=1,N)
IP=IND+1
DIS=ZOF(2)-ZOF(1)
REV=Z1F(2)-Z1F(1)
REACC=Z2F(2)-Z2F(1)
ENED1(IP)=Z1F(1)*(CC(1)*ZlF(1)+AKC(1)*ZOF(l))
ENED2(IP)=REV*(CC(2)*REV+AKC(2)*DIS)

C
C INITIATE THE NEXT COMPUTATION CYCLE
C

DO 1341 I=1,N
ZOI (I )ZOF( I)
ZII(I )=ZF( I)
Z21 (I)=Z2F( I)
PSI(I )PSF( I)

1341 CONTINUE
8999 CONTINUE

CALL SIMP(ENED1,ENER1,DT,NT)
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CALL SIMP(ENED2,ENER2 ,DT,NT)
ENER=ENER1 +ENER2
WRITE(6, 17) ENER1,ENER2,ENER

3 FOMT/
14 FOR!4AT(2E12.4)
17 FORMAT(3E12.4)

100 FORMAT(1E12.4)
STOP
END

- C
C FIND THE AREA UNDER THE CURVE
C

SUBROUTINE SIMP(X,E,D,N)
DIMENSION X(1024)
N2=N/2-1
E=X (1)
DO 1 I=1,N2
1A=2*1
IB=IA+1
E=E+4. O*X( IA)

1E=E+2.0*X( IB)

N3=N-1
E=E+0.5*X(N3)+1.5*X(N)
E=D*E/3.0
RETURN
END

*C SUBROUTINE MULTIPLICATION
C

SUBROUTINE MVM(A;-B,C,N)
DIMENSION A(2,2),B(2),C(2)
DO 1 1=1,N

* C(I)=O.
* DO 1 J=1,N

C(I )=A( I,J)*B(J)+C( I)

1 CONTINUE

END

uI
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C
C
C * PROGRAM "TIMID"
C
C MAIN PROGRAM FOR LEAST-SQUARE STRUCTURE
C IDENTIFICATION
C

EXTERNAL SUBS
EXTERNAL MULTI

- DIMENSION C(720,2) ,D(1O, 10) ,AT(2,720) ,CM(2,2)
DIMENSION F(720,1) ,AA(2,1) ,CA(720,1) ,ERR(720, 1)
DIMENSION CMS(2,2),DIA(2,1) ,CMS1(2,2),UM(2,2)
DIMENSION CMI(2,2),CT(2,720),ERRT(1,720) ,AJN(2,2)
DOUBLE PRECISION AT,CM,CT,AA,C,F,CA,ERR,ERRT
DOUBLE PRECISION AJN,CM1,CMS,DIA,CMS1,UM
CALL OPSYS('ALLOC','ID1',33)

C
C DATA FILE NEED TO CHANGE ACCORDING THE
C SYSTEM USED
C N NUMBER OF POINTS FOR THE IDETIFICATION
C IM NUMBER OF COLUM
C

CALL OPSYS('ALLOC','ID1',34)
READ(5,*) N,M,IM
DO 10 I=1,N

* *10 READ(33,15) (C(I,J), J=1,IM)
DO 11 I=1,NI 11 READ(34,16) (F(I,1))
CALL TRAN(C,N,IM,AT)
CALL MULTI (AT, IN,N, C,IM, CMS1)
DO 8 11I,IM
DO 8 J1I,IM

8 CM(I,J)=CMS1(I,J)
L WRITE(6,30)

DO 3 I=1,IM
3 WRITE(6,4) (CMS1(I,J),J=1,IM)

CALL INVER(CMS1, IM,D,M,DETER)
CALL MULTI (CM, IN,IM,CMS1, IM,UM)
WRITE(6,33)

- DO 5 I=1,IM
5 WRITE(6,7) (UM(I,J),J=1,IM)

* CALL MULTI(CMS1,IM,IM,AT,N,CT)
CALL MULTI(CT,IM,N,F,1,AA)
WRITE(6,34)
DO 22 I=1,IM

22 WRITE(6,12) AA(I,1)
CALL MULTI(C,N,IM,AA,1,CA)
CALL SUBS(F,N,1,CA,ERR)
CALL TRAN(ERR,N,1,ERRT)
CALL MULTI(ERRT,1,N,ERR,1,VAR)
VAR=VAR/ (N- IN)

LI DEV=SQRT(VAR)



155

WRTE6,7

WRITE(6, 17) E
4WFRT(2,37)DE

4 FORI4AT(2E16.6)

12 FORMAT(E16.6)
15 FORMAT(2E12.4)

* .16 FORMAT(1E16.6)
17 FORMAT (5X,'THE DEVIATION IS',/)
20 FORMAT(6E12.4)

~jm24 FORMAT(6E12.4)
30 FORMAT(5X,'MATRIX Z',/)
31 FORMAT(5X,'INVERSE MATRIX',/)
32 FORMAT(5X,'INVERSE MATRIX IMPROVED',/)
33 FORMAT(5X,'UNIT MATRIX FOR CHECKING',/)Mi:.;34 FORMAT(5X,'INDENTIFIED PARAMETERS' ,/)
35 FORMAT(SX,'MATRIX CT',/)
37 FORMAT(E18.6)

STOP
END

C
C THIS SUBROUTINE IS FOR MATRIX INVERSION
C

SUBROUTINE INVER(A,N,B,M,DET)
DOUBLE PRECISION A(2,2),B(2,2),IPVOT(2),INDEX(2,1O)
DOUBLE PRECISION T,PIVOT(2)
COMMON IPVOT, INDEX,PIVOT
EQUIVALENCE (IROW,JROW), (ICOL,JCOL)

C INITIALIZATION
C

DET=1.ODO
DO 7 J=1,N

7 IPVOT(J)=O
DO 135 I=1,N

C
C SEARCH FOR PIVOT ELEMENT
C

T=O.ODO
DO 9 J1I,N
IF(IPVOT(J)-1) 13,9,13

13 DO 23 K1I,N
IF(IPVOT(K)-1)43,23,81

43 IF(DABS(T)-DABS(A(J,K))) 83,23,23
83 IROW=J

ICOL=K
T=A( J,K)

23 CONTINUE
9CONTINUE
IPVOT( ICOL)=IPVOT( ICOL)+1

C
C PUT PIVOT ELEMENT ON DIAGONAL
C
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IF(IROW-ICOL) 73, 109,73
73 DET=-DET

DO 12 L=1,N
~ T=A(IROW,L)

A( IROW, L)=A( ICOL, L)
12 A(ICOL,L)=T

IF(M) 109,109,33
33 DO 2 L=1,M

T=B (IO, L)
B( IROW, L)=B( ICOL, L)

2 B(ICOL,L)=T
109 INDEX(I,1)=IROW

INDEX(I,2)=ICOLK PIVOT( I)=A( ICOL,ICL
DET=DET*PIVOT(I)

C
~.:C DIVIT PIVOT ROW BY PIVOT ELEMENT

C
A(ICOL, ICOL)=1.
DO 205 L=1,N

205 A(ICOL,L)=A(ICOL,L)/PIVOT(I)
IF(M) 347,347,66

66 DO 52 L1I,M
52 B(ICOL,L)=B(ICOL,L)/PIVOT(I)

C REDUCE NON-PIVOT ROW
CS347 'DO 135 L11I,N

IF(LI-ICOL) 21,135,21
21 T=-A(LI,ICOL)

A(LI, ICOL)0O.ODO
DO 89 L1I,N

89 A(LI,L)=A(LI,L)-A(ICOL,L)*T
L IF(M) 135,135,18

18 DO 68 L=1,M
68 B(LI,L)=B(LI,L)-B(ICOL,L)*T

135 CONTINUE
C
C INTERCHANGE COLUMNS
C

222 DO 3 I=1,N
L=N-I+1
IF(INDEX(L, 1)-INDEX(L,2)) 19,3, 19

19 JROW=INDEX(L,1)
JCOL=INDEX( L,2)
DO 549 K1I,N
T=A(K,JROW)

* A(K,JROW)=A(K,JCOL)
A(K,JCOL)=T

549 CONTINUE
3 CONTINUE

81 RETURN
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END

C
C THIS SUBROUTINE IS FOR MATRIX MULTIPLICATIONp C

SUBROUTINE MULTI(A,N,M,B,L,C)
DIMENSION A(NM),B(ML),C(N,L)
DOUBLE PRECISION A,B,C
DO 5 11I,N
DO 5 J=1,L
C(I,J)=O.ODO
DO 5 K=1,M

5 C(I,J)=C(I,J)+A(I,K)*B(K,J)
RETURN
END

-' SUBROUTINE MULTIA(TA,N,M,TB,L,TC)
DIMENSION TA(N,M),TB(M,L),TC(N,L)
DOUBLE PRECISION TA,TB,TC
DO 15 I=1,N
DO 15 J=1,L
TC (I, J )=0.ODO
DO 15 K=1,M

15 TC(I,J)=TC(I,J)+TA(I,K)*TB(K,J)
RETURN
END

C
C THIS SUBROUTINE IS FOR MATRIX TRANSFORMATION
C

* SUBROUTINE TRAN(A,N, IM,AT)
DIMENSION A(N,IM),AT(IM,N)
DOUBLE PRECISION A,AT
DO 3 I=1,N
DO 3 J=1,IM

3 AT(J,I)=A(I,J)
RETURN
END

C
C THIS SUBROUTINE IS FOR MATRIX SUBSTRACTION
C

SUBROUTINE SUBS(A,N,IN,B,C)
DOUBLE PRECISION A(N,IN),B(N,IN),C(N,IN)
DO 101 I=1,N
DO 101 J=1,IN

do 101 C(I,J)=A(I,J)-B(I,J)
RETURN

C END

SUBROUTINE SET(A,IM,B,DIA)

DIMENSION A(IM,IM),B(IM,,IM),DIA(IM,1)
DOUBLE PRECISION A,B,DIA
DO 3 J1I,IM
DO 3 I=1,IM
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B (I ,J )=A (I ,J )/A (J, J)
DIA(J,1)=A(J,J)

3 CONTINUE
RETURN
END

C THIS SUBROUTINE IS FOR IMPROVING THE ACCURACY
C OF THE MATRIX INVERSION.
C

SUBROUTINE RIVISE(A,A1, IM,AIN)
DOUBLE PRECISION A(2,2) ,A1(2,2) ,AIN(2,2) ,AJN(2,2)
DOUBLE PRECISION UN(2,2) ,UN1(2,2) ,SA1(2,2)
DOUBLE PRECISION ERR(2,2),AA1(2,2)
UN1(1,1)=1.ODO
UN1(2,2)=l.ODO
UN1(3,3)=1.ODO
UN1(4,4)=1.ODO
UN1(1,2)0O.ODO
UN1(1,3)=O.ODO
UN1(1,4)=O.ODO
UNI(2,1)=0.ODO
UN1(2,3)0O.ODO
UNI(2,4)=O.ODO
UN1(3,1)0O.ODO
UNI(3,2)=O.ODO
UNI (3,4)=0. ODO
UNI(4, 1)0O.ODOS UN1(4,3)=O.ODO
DO 30 11I,IM
DO 30 J1I,IM

30 UN(I,J)=UN1(I,J)*2.ODO
I COUNT=1l

2 CALL MULTI(A,IM,IM,A1,IM,AAl)
K CALL SUBS(UN,IM,IM,AA1,SA1)

CALL MULT(I, IM, IM, SAl, IM, AIN)
CALL MULTI(A, IM, IM,AIN, IM,AJN)
ERRSM=O. ODO
DO 5 I=1,IM
DO 5 J=l,IM

- ERR(I,J)=AJN( I,J)-UNl( I,J)
ERRSM=ERRSM+DABS (ERR (I ,J))

5 CONTINUE
IF(ERRSM.LT.l.OD-7) GO TO 20
I COUNT= ICOUNT+ 1

10 DO 15 I=1,IM
DO 15 J=1,IM

15 A1(I,J)=AIN(I,J)
GO TO 2

20 RETURN
END
SUBROUTINE INVERS(B,N,A)

Li DOUBLE PRECISION A(N,N),B(N,N),C(18,18)



159

L

DOUBLE PRECISION AMAX,TEMP,PIVOT
DIMENSION INDEX(4,2)
IF(N.GT.40) WRITE(6,101)

* 101 FORMAT(20X,'MATRIX INVERSION IS LIMITED TO A
+40 X 40 MATRIX')
IF(N.GT.40) GO TO 134

103 FORMAT(/,' MATRIX INVERSION'//)
104 FORMAT(' THE MATRIX (XT*X)',/)
106 FORMAT(' ROW', 13,1X,IP4El6.7/(8X,lP4El6.7))
128 FORMAT(' THE INVERSE OF MATRIX (XT*X)',/)
131 FORMAT(' THE UNIT MATRIX')
133 FORMAT(' ZERO PIVOT')

DO 90 I=1,N
DO 90 J=1,N
"A(I ,J)=B(I,J)

90 CONTINUE
WRITE(6,103)
WRITE(6,104)
DO 105 I=I,N

105 WRITE(6,106) I,(A(I,J),J=I,N)
DO 107 I=I,N
DO 107 J=I,N

107 B(I,J)=A(I,J)
DO 108 I=1,N

108 INDEX(I,1)=O
II=0

109 AMAX=-I.0D0
DO 110 I=1,N

" IF(INDEX(I,1)) 110,111,110
III DO 112 J=1,N

IF(INDEX(J,1)) 112,113,112
- 113 TEMP=DABS(A(I,J))

IF(TEMP-AMAX) 112,112,114
S- 114 IROW=I

ICOL=J
AMAX=TEMP

112 CONTINUE
110 CONTINUE

IF(AMAX) 225,115,116
116 INDEX(ICOL,I)=IROW

IF(IROW-ICOL) 119,118,119
119 DO 120 J=1,N

TEMP=A(IROW,J)
A(IROW,J)=A(ICOL,J)

120 A(ICOL,J)=TEMP
~II=II+l

INDEX(II,2)=ICOL
118 PIVOT=A(ICOL, ICOL)

A(ICOL, ICOL)=I.ODO
PIVOT=I.ODO/PIVOT
DO 121 J=I,N

| 121 A(ICOL,J)=A(ICOL,J)*PIVOT

4-
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DO 122 I=1,N
IF(I-ICOL) 123,122,123

123 TEMP=A(I,ICOL)I A(I, ICOL)0O.ODO
DO 124 J1I,N

124 A(I,J)=A(I,J)-A(ICOL,J)*TEMP
122 CONTINUE

GO TO 109
125 ICOL=INDEX(II,2)

- IROW=INDEX(ICOL,1)
DO 126 11I,N
TEMP=A( I, IROW)
A( I,IROW)=A( I, ICOL)

-. 126 A(I,ICOL)=TEMP
II=II-1

225 IF(II) 125,127,125
127 WRITE(6,128)

DO 129 11I,N
129 WRITE(6,106) I,(A(I.,J),J=1,N)

DO 130 11I,N
DO 130 J=1,N

10DO 130 K=1,N
13 C(I,J)=C(I,J)+B(I,K)*A(K,J)

WRITE(6,131)
* DO 132 1=1,N

132 WRITE,(6,106) I,(C(I,J),J=1,N)I GO TO 134
115 WRITE(6,133)

*134 RETURN
END

C
* C

* C *PROGRAM "ENER2"*

* C
C THIS PROGRAM COMPUTES ENERGY DISSIPATED IN A
C 2ND ORDER SYSTEM ,AO,A1 COEFF GENERATED
C IN IDENTIFICATION PROGRAM
C DT DELTA T
C N NO OF PTS

DIMENSION F(1024),XINT(1024)
* REAL K1,K2,L1,L2

CALL OPSYS( 'ALLOC' ,'RHI' ,55)
CALL OPSYS( 'ALLOC', 'IDi' ,57)
READ(5, *)N
READ(5, *)DT,AO,A1,AMS
READ(55,90) (F( I), I=1,N)
XINT(1)0O.O
NM=N-1
C1=-A1/AMS
C2=-AO/AMS
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[3=1 Og/AM S

zO=O.O0

*DO 999 11I,NM
T=DT*(I-1)
K1=DT*ZO
L1=DT* (C1*ZO+C2*YO+C3*F( I))
K2=DT*(ZO+L1)
L2=DT*(C1*(ZO+L1)+C2*(YO+K)+C3*F(I+1))

- ~Y1=YO+O.5*(K+K2)
Z1=ZO+O. 5* (L1+L2)
I P= I+ 1
XINT( IP)=Z1**2
yO=y1
ZO=Z1
WRITE(57,92)T,YO

999 CONTINUE
CALL SIMP(XINT,ENED,DT,N)
ENED=A1*ENED+O. 5*AO*Y1**2
WRITE(6, 12 )ENED

12 FORMAT(5X,7HENED = E12.4)
-90 FORMAT(E12.4)

91 FORMAT(1E12.4)
92 FORMAT(2E12.4)

STOP
END
SUBROUTINE SIMP(X,E,D,N)U DIMENSION X(1024)
N2=N/2-1
E=X(l)
DO 1 I=1,N2
I A=2 *
IB=IA+1

* E=E+4.0*X(IA)
X E=E+2.O*X(IB)

1 CONTINUE
-* .. N3=N-1

E=E+O.5*X(N3)+1.5*X(N)
E=D*E/3.0
RETURN
END

C
C
C
C * PROGRAM "ENER3"*

C
C THIS PROGRAM USES THE INCREMENTAL EQUATIONS
C TO COMPUTE THE ENERGY DISSIPATED
C IN A 3RD ORDER SYSTEM
C N NO OF PTS
C DT DELTA T
C AO,A1,A2 COEFF FROM ID PROGRAM
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C AO COMPARE TO STIFFNESS
C ENED TOTAL ENERGY DISSIPATED
C ENEDI SPRING ENERGY DISSIPATED
C

CALL OPSYS('ALLOC','1D2',21)
DIMENSION F(1024),FD(1024),XINT(1024)
DIMENSION ESP(1024) ,XINTJ.(1024)
READ(5,*)N
READ(5, *)DT,A0,Al,A2,AMS
CALL OPSYS('ALLOC','RH1',55)

111 READ(55,91)(F(I),FD(I),I=1,N)
C CONVERT

AO=AO/(A2*AMS)
A1=Al/(A2*AMS)
B1=1.O/(A2*AMS)
B2=1.0/AMS

* - A2=1.0/A2
C CONSTANTS

R0=24. O/DT**3
R1=4.0
R2=12.O/DT
R3=24.0/DT**2
SO=12.0/DT**2
Sl=DT
S2=6.0
S3=12.0/DT
UO=4.0/DT
Ul1DT**2/6.0
U2=DT

* U3=4.0
Q1=24.O/DT**3+12 .O*A2/DT**2+4.O*Al/DT+AO
Q2=4.0+A2*DT.A1*DT**2/6.0
Q3=12.O/DT+6. O*A2+A1*DT

* Q4=24.O/DT**2+12.O*A2/DT+4.0*Al
YO=O.O
Y1=0.0

-' Y2=0.0
Y3=B1*F( 1) B2*FD( 1)
XINT(1)=0.O

- ESP(1)=0.O
NM=N-1
DO 999 I=1,NM
T=DT*(I-1)

DZO=(DF+Q2*Y3+Q3*Y2+Q4*Y1 )/Q1
DZI=UO*DZO-U1 *Y3-U2 *Y2 -U3 *Yl
DZ2=SO*DZO-S1*Y3-S2*Y2-S3*Yl
YO=YO+DZO
Y1=Y1+DZ1

Y2=Y2 +DZ2

Y3=B1*F( 1+1 )+B2*FD( 1+1 )-A2*Y2-A1*Y1-AO*YO '

IPIV



163

XINT( IP)=Y1*(F( IP)-AMS*Y2)
WRITE(21,91)T,YO

999 CONTINUE
* CALL SIMP(XINTENED,DT,N)

* WRITE(6,12)ENED
12 FORMAT(5X,7HENED = E12.4)
90 FORMAT(E12.5)

*91 FORMAT(2E12.4)
STOP
END
SUBROUTINE SIMP(X,E,D,N)
DIMENSION X(1024)
N2 =N/2 -1
E=X(1)
DO 1 11I,N2
IA=2*I
I B= IA+ 1
E=E+4. O*X( IA)
E=E+2.O*X( IB)

1 CONTINUE

E=E0.5X(N)+1. 5*X(N)

E=D*E/3.0
RETURN
END

C
C
C *PROGRAM "FREQID" A L
C
C
C FREQUENCY DOMAIN SYSTEM IDENTIFICATION
C

REAL DD(1024),F(1024) ,W( 1024) ,COE(4) ,QT(20)
* DIMENSION S(1024),INDEX(1024),QQ(1024),X2(22,1)

DIMENSION X1(22,2) ,XT1(2,22) ,XP(2,2) ,XPI(2,2)
DIMENSION XTT(2,22),B(2,1)
COMPLEX FT(1024) ,DDF(1024)
CALL OPSYS('ALLOC','FDI',10)
CALL OPSYS('AkLLOC','ID1',8)
COMMON /ARRAY/W, QQ,5, INDEX
EXTERNAL SPLINE
EXTERNAL QE
EXTERNAL MAT INV

C
C WHEN INDE=1 SHOWS THE PROGRAM WILL GO TO
C THE THIRD ORDER SYSTEM
C

INDE=1
ID=O
KDEX=O
MP=2
M= 10
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N=1024
NT=N/2
NTP=NT+ 1
DT=O.05
C2=1.O0
P1=3. 1415926535
NS=NI2
CA=PI/NS

C
C GET THE INPUT FROM THE FILE AND FFT THE INPUT

- C
READ(10, 15) (F( I) ,DD( I), I=1,N)

15 FORMAT(2E12.4)
IF(KDEX.NE.1) GO TO 13

C
C SMOOTH THE FUNCTIONP
C

DO 9 11I,NS
IM=N-I+l
CM4ULT=O.5*(1.0-COS( (I-1)*CA))
F(IM)=CMULT*F(IM)
DD(IM)=CMULT*DD(IM)

9 CONTINUE
13 TT=N*DT

C
C DO THE FOURIER TRANSFORM
C

DO 20 I=1,N*1 FT(I )=CMPLX(F(I ) ,.O)'*TT
DDF(I)=CMPLX(DD(I) ,O.O)*TT

20 CONTINUE
CALL FFT1(FT,M,N,-1.)
CALL FFT1(DDF,M,N,-1.O)

* C
C CALCULATE THE DF AND FREQUENCY
C

DF=2.0*PI/TT
DO 24 1=1,N

24 CONTINUE
IF(ID.EQ.1) GO TO 33
GO TO 45

C
C IDENTIFICATION PROCESS
C SECOND ORDER SYSTEM
C
C CHANGE F.T. OF ACCELERATION TO F.T. OF DISPLACEMENT
C

33 DO 55 I=2,N
DDF( I)=-DDF( I)/(W( I)**2)

55 CONTINUE
45 DO 50 1=40,60 9
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FF=CABS(FT( I))
ZF=CABS(DDF( I))
QQ( I )FF**2/(ZF**2)*RT(,8WIQI

50 CONTINUE
GO TO 200

C
C FIND THE MINIMUN OF THE QQ(I) AN4D IT'S FREQUENCY
C

sp SMAL=QQ(30)
KN=30
DO 60 I=31,70
IF(SMAL.LE.QQ(I)) GO TO 60
SMAL=QQ( I)
QMIN=QQ( I)
KN= I

60 CONTINUE
WM=KN*DF

C CALCULATE THE STIFFNESS

CO=C2 *WM* *2
~- C WRITE(6, *)KN,WM,CO,QMIN

<*C USE FIT TO FIND THE REAL MINIMUM
C

ASO0.9W
AF1I. *WM
I SAS/DF
I F=AF/DF
IJ=IS-1
ITT=( IF-IS)+1
DO 67 I=1,ITT

5. IK=I+IJ
- QT(I)=QQ(IK)

67 CONTINUE
C
C POLYNOMIAL FITTING BY LEAST SQUARE METHOD
C
C QT :INPUT VALLES
C ITT:TOTAL PTS OF QT
C AS:START FREQUENCY
C AF:FIANL FREQUENCY
C COE(I):COEFFICIENTS OF POLYNOMIAL

CALL FIT1(QT,3,ITT,AS,AF,COE)
WM=-COE(2)/(2 .O*COE(3))
C0=C2 *WM* *2
WRITE(6, *)ITT,WM,CO

* -.. C

C SET THE RANGE OF FREQUENCY AND FIT THE
LC DATA BY CUBIC SPLINE
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C
QAO. 9
QBl. 15 WA=QA*WM
WB=QB*WM
IF(INDE.EQ.1) GO TO 80
CALL SPCOEF(NT,W,QQ,S,INDEX)
DO 70 I=1,NT

70 CONTINUE
C
C DO THE INTEGRATION AND CALCULATE THE DAMPING
C

CALL SIMP(QF,WA,WB,1.OE-5,ANS,ERROR,AREA,IFLAG)
Q1N=5.*ANS/(WM**7)
Q3=(QB**3)-(QA**3)
Q5=(QB**5)-(QA**5)
Q7=(QB**7)-(QA**7)
QP=(5./3.)*Q3+2.*Q5-.(5./7.)*Q7
C1=( (W**2)/Q5)*(QIN+(C2**2)*QP)
CC=SQRT(CI)
WRITE (6,*) CO,CC,ANS,IFLAG
GO TO 200

C
C INDENTIFICATION FOR THIRD ORDER SYSTEM
C
C CALCULATE THE FREQUENCY BAND FOR IDENTIFICATION
C

80 IA=WA/DF
I BWB/DF
II=IA-1
NF=(IB-IA)+1
WRITE(6, *)NFIA, lB

C
C FORMING THE IDETIFICATION MATRIX
C

DO 100 11IA,IB
J1 -II
EU=W(I)**2
EV=-2. *C2*(W( I)**4)
EE=WM**2-(W(I)**2)
EW=(C2**2)*(EE**2)
QQ( I )COE( 1)+COE(2)*W( I)+COE(3)*(W(I )**2)
X1(J,1)=EU
XI(J,2)=EV
X2(J,1)=QQ(I)-EW

100 CONTINUE
DO 105 I=1,2
DO 105 J=1,2
XP( I,J)0O.0

* I~-DO 105 K=1,NF.
XP(I,J)=XP(I,J)+X1(K, I)*Xl(K,J)
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105 CONTINUE
DO 104 I=1,2
DO 104 K=1,NF
XT1(I,K)=XI(K,I) "

104 CONTINUE
CALL MATINV(XP,MP,XPI)
DO 106 I=1,2
WRITE(6, 15) (XPI(I,J),J=1,2)

106 CONTINUE
DO 110 I=1,2
DO 110 J=I,NF
XTT(I, J)=0.0
DO 110 K=1,2

110 XTT(I,J)=XTT(I,J)+XPI(I,K)*XTI(K,J)
DO 118 I=1,2

118 WRITE(6,37)(XTT(I,J),J=1,NF)
DO 115 I=1,2
B(I,I)=0.0.
DO 115 K=1,NF

115 B(I,!)=B(I, I)+XTT(I,K)*X2(K, 1)
DO 119 I=1,2

119 WRITE(6,*) B(I,1)
CK=SQRT(B(I, 1))
CL=B(2,1)/CK
WRITE(6, * )CK,CL

35 FORMAT(24H REAL PART IMAGINAL PART)
37 FORMAT(6E12.4)
88 FORMAT(2E12.4)

200 STOP
END

C
C FUNCTION QF IS A CONTINUOUS FUNCTION.
C THE DATA QQ(I) WAS ARRANGED SO THAT THE FUNCTION
C COULD BE CALLED IN ANY TIME.
C

FUNCTION QF(WW)
DIMENSION W(1024),QQ(1024),S(1024),INDEX(1024)
COMMON /ARRAY/W, QQ, S, INDEX
N=512
X=WW
QT=SPLINE(N,W,QQ,S, INDEX,X)
QF=QT* (X**2)
RETURN
END

• 2A
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C
C
C *PROGRAM NAME "PUR"*I C
C THIS PROGRAM IDENTIFIES THE PARAMETERS OF A
C TIME VARYING SECOND-ORDER LINEAR MODEL BY

*C USING THE PERTURBATION METHOD AND ITERATIVE
C NEWTON- RAPHSON PROCEDURE. IT MAY ALSO USE

* .C THE POLYNOMIAL FITTING APPROACH.

-~ C COMPLEX FF(1024),FD(1024)

COMPLEX ZZ(1024),HD,Z(1024),HABS(512)
DIMENSION DD(1024),F(1024),HMOD(S2.2),HZ(512)

* DIMENSION EK(3),COE(4),S(9),INDEX(9),AS(9)
* COMMON/ARRAY/FF, FD

CALL OPSYS('ALLOC','FD1',1O)
- CALL OPSYS('ALLOC','RH1',7)

CALL OPSYS('ALLOC','NFL',4)
EXTERNAL MAT INV

C
C SM :SYSTEM MASS
C ALPHA :DAMPING COEFFICIENT
C BETA :STIFFNESS COEFFICIENT
C ZETA :DAMPING RATIO
C Cl :INITIAL GUESS 'DAMPING'

*C C2 :INITIAL GUESS 'ALPHA*C1'
C C3 :INITIAL GUESS 'STIFFNESS'5C C4 :INITIAL GUESS 'BETA*C3'
C ESLON :ACCURACY MEASURE(FOR ESLON1-ESLON4)
C W1-W4 :ACCURACY MEASURE FOR NEWTON METHOD
C DA1-DA4 INCREMENT VALUES

* * C

* 5M=1.0
C1=1.5
C2=0.02
C3=37.5
C4=-0.01
ZETA=O. 1
ESLON1=O.02

- ESLON2=O.02
ESLON3=0.02
ESLON4=O.02
WN=SQRT (C3/SM)

* -. DA1O0.O1
DA2=O.001
DA3=1.O

* DA4-0.01

- W2=0.01
W3=0.01
W4=0.01
PI=3.1415926535



- 169
L

DT=-O.05

M= 10
N=2 * *MP NT=N/8

* TT=DT*N
DW=2.*PI/TT
NS=N/2
CA=PI/INS

C READ IN THE TIME DOMAIN RESPONSE

C
READ(10,80) (F(I),DD(I),I=1,N)

C
C WINDOW THE DATA
C

DO 3 1=1,NS
IM=N-I+1
CMULT=O.5*(1.O-COS( (I-1)*CA))
F( IM)=CMULT*F( IM)
DD( IM)=CMULT*DD( IM)

3 CONTINUE
cl C

C FFT THE INPUT AND RESPONSE
C

DO 8 I=1,N
FF(I )=CMPLX(F( I) ,O.O)*TT
ZZ( I)=CMPLX(DD(I ),O.O)*TT

8 CONTINUE '
CALL FFT1(FF,M,N,-1.O)

* CALL FFT1(ZZ,M,N,-1.O)
* C

C FIND THE MOD(H)
C

DO 9 1=1,NT
FA=CABS(FF( I))
ZA=CABS(ZZ( I))

9 CONTINUE
C
C CALCULATE THE DERIVATIVE OF FF
C

DO 12 I=1,N
TC=(I-i) *DT
F(I)=F(I)*TC
FD(I)=CMPLX(F(I),O.O)*TT

12 CONTINUE
CALL FFT1(FD,M,N,-1.)
DO 13 I=1,N

13 FD(I)=FD(I)*CMPLX(0.O,-1.)
C
C FIND THE NUMBER OF PTS NEEDED IN THE BAND
C
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V NC=(1.0*ZETA*WN)/DW

NW=WN/DW
NS=NW-NC

* NF=NW+NC
AAI=Cl
AA2=C2
AA3=C3
AA4=C4

26 L=i
28 WRITE(6,89)C1,C2,C3,C4

ICOUNT=2
I STEA= ICOUNT
AC1=Ci
AC2=C2
AC3=C3
AC4=C4

C
C CALL SUBROUTINE BURT TO FIND THE MODULUS
C OF H FROM THE MEASURED INPUT
C

29 WN=SQRT(C3/SM)
NC=(I.O*ZETA*WN)/DW
NW=WN/DW
NS=NW-NC
NF=NW+NC
CALL PURT(DW,NT,C1,C2,C3,C4,HZ)

IC FIND E(ERROR MEASURE)
C

EEO0.O
DO 30 I=NS,NF
E=HMOD(I)-HZ(I)
EE=EE+ (E**2)

30 CONTINUE
-' EK(ICOUNT)=EE

IF(ICOUNT.EQ.3) GO TO 50
GO TO (31,32,33,34),L

31 IF(ICOUNT.EQ.1) GO TO 40
Ci=Ci-DAi

-I COUNT=I COUNT-i
GO TO 29

40 C1=AC1+DAl
ICOUNT=ISTEA+1
GO TO 29

32 IF(ICOUNT.EQ.1) GO TO 42.
C2=C2 -DA2
I COJNT=I COUNT-i
GO TO 29

41 C2=AC2+DA2
ICOUNT=ISTEA+1
GO TO 29

33 IF(ICOUNT.EQ.1) GO TO 42

Li7
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C3=C3 -DA3
I COUNT=I COUNT-i
GO TO 29

42 C3=AC3+DA3
ICOUNT=ISTEA~1

* GO TO 29
*34 IF(ICOUNT.EQ.1) GO TO 43

C4=C4-DA4
I COUNT--I COUTNT-i
GO TO 29

43 C4=AC4+DA4
* *- ICOUNT=I STEA+l

GO TO 29
C

*C CALCULATE THE FIRST AND SECOND DERIVETIVES
C

50 GO TO(60,61,62,63),L
60 TD=DA1

AV=ACI
w=W1

*GO TO 70
61 TD=DA2

AV=AC2
W=W2
GO TO 70

*62 TD=DA3
AV-AC3
W=W3
GO TO 70

63 TD=DA4
AV=AC4
W=W4
GO TO 70

*70 DEK=(EK(3)-EK(1))/(2.O*TD)
DDEK-(EK(3)-2.*EK(2)4EK(1) )/(TDl**2)

C
C DO THE NEWTON RAPHSON METHOD
C

ACC=AV- (DEK/DDEK)
WE=ABS( (ACC-AV)/ACC)
WD=WE-W
IF(WD.LE.O.O) GO TO 87

99 GO TO(i0i,102,103,104),L
101 Ci=ACC

GO TO 28
102 C2=ACC

GO TO 28
103 C3=ACC

00 TO 28
*104 C4=ACC

87 0TO028
87GO TO(92, 93, 94,95),L
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92 C1=ACC
GO TO 85

93 C2=ACC
GO TO 85

94 C3=ACC
GO TO 85

95 C4=ACC
85 L=L+1

IF(L.EQ.5) GO TO 100
GO TO28

C-'- C
C COMPARE THE PARAMETERS
C

100 CD1=ABS((AA1-C1)/C1)
CD2=ABS( (AA2-C2 )/C2)
CD3=ABS( (AA3-C3)/C3)
CD4=ABS ((AA4-C4 )/C4)
IF(CD1.GT.ESLONI) GO TO 81
IF(CD2.GT.ESLON2) GO TO 81

:~;:IE(CD3.GT.ESLON3) GO TO 81
IF(CD3.GT.ESLON4) GO TO 81
WRITE(6,*) C1,C2,C3,C4
GO TO 88

81 AA1=C1
AA2=C2
AA3=C3
AA4=C4
GO TO 26

80 FORMAT(2E12.4)
82 FORMAT(3E13.4)
89 EORMAT(4E12.4)
150 FORMAT(2E16.6)
88 STOP

END
C

C PERTURBATION METHOD

SUBROUTINE PURT(DW,NT,C1,C2,C3,C4,HA)
COMPLEX FE(1024),FD(1024),HABS(512),Z(512)
COMPLEX HD,H,HDEV,H1,H2,H3,H4

* . DIMENSION HA(NT)
COMMON/ARRAY/FF, FD
5M=1.0
DO 14 I=1,NT
W=(I-1)*DW
HD=CMPLX( (C3-SM*(W**2) ),W"'C1)
H=1.0/HD
HDEV=CMPLX( (2. *SM*W) ,-C1)/(HD**2)
H1=H*FE( I)
H2=C2*H* (Hl+W* (HDEV*FF( I) +H*FD( I)))

Li H3=CMPLX(.,-C4)*H*(HDEV*F(I)+H*FD(I))
Z(I)=H1+H2+H3
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H4=HDEV+H*(FD( I)/FF( I))
HABS(I)=H*(1.O+C2*(H+W*H4)-CMPLX(0.0,C4)*H4)
HA( I)=CABS(HABS( I))

14 CONTINUE
1GOTOlO0
10RETURN
END

C
C
C PROGRAM "MDFID"
C
C
C IDENTIFICATION OF MDF SYSTEM
C

DIMENSION F2(1024) ,Y1(1024) ,Y2(1024),W(50) ,CT(6)
COMPLEX YlFT(1024),Y2FT(1024),F2FT(1024),AINV(2,2)
COMPLEX B(2,2) ,H(2,2) ,H12,H22,A(2,2) ,B1,B2,CD
COMPLEX AA(2,2),BB(2,2) ,AAIN(2,2),B11,B22
DIMENSION EPS1(50),EPS-2(50) ,Y1T(100),Y2T(100) ,CC(6)
DIMENSION C(6) ,DC(6) ,Yl1(100) ,Y22(100) ,ERROR(100)
DIMENSION CCOUNT(6),E2(20)
REAL M1,M2,MC,COE(5)
CALL OPSYS('ALLOC','RH3',14)
CALL OPSYS('ALLOC','MDF1',1O)

C CALL OPSYS('ALLOC','MOD1',13)
EXTERNAL INVERS

CIC SET PARAMETERS
C
C DT:TIME STEP
C DW:DELTA W
C NT:NUMBER OF TIME STEP
C M1:MASS FOR 1ST DEGREE OF FREEDOM

uiC M2:MASS FOR 2ND DEGREE OF FREEDOM
C NWA:NUMBER OF FFT FREQ. WHERE ANALYSIS STARTS
C NID:NUMBER OF PARAMETERS IDENTIFIED
C NW:NUMBER OF FREQUENCIES WHERE ANALYSIS DONE
C NCUV:NUMBER OF PTS TO DEFINE THE CURVE
C Wi: 1ST FREQUENCY WHERE ANALYSIS DONE
C NCY:NUMBER OF ITERATION WILL BE PERFORMED
C C(J),J=1,6 :SYSTEM PARAMETERS
C DC(J),J=1,6 :INCREMENT FOR C(J)
C IORDER: 3=THIRD-ORDER; 2=SECOND-ORDER
C

NCOL=2
I ORDER=3
I SMOTH1l
DTO0.05
NT=1024
N3=1024/2
NCY=2 0
NID=6



~iz 174

NCUV=7
M=10

II M2=1.0
C

I..C INITIAL GUESS
C

C(1)=30.0
C(2)=1.5
C (3) =0.01
C(4)=25.0
C(5) =2.0
C (6) =0.01
DC(1)=1.0
DC(2)=0.05
DC(3)=0.001
DC(4)=1.O
DC(5)=O.05
DC(6)=0.001
ACUR=O. 02
P1=3.1425926
CA=-PI/NS
TT=DT*NT

2 DW=2.0*PI/TT
NW=30
NWA=3O
W1=NWA*DW.1 DO 111 I=1,NW

W2=W(NW)
DO 112 I=1,NID

112 CT(I)=C(I)

MC=Ml+M2

4' READ INPUT AND REPONSE THEN FFT
C

READ(1O, 12) (Y1(I) ,Y2( I), I=1,NT)
READ(14,16) (F2(I),I=1,NT)

-C COMPUTE THE RELATIVE DISPLACEMENT AND
C SMOOTH THE INPUT FUNCTIONWHEN IF NECESSARY

DO 37 I=1,NT

37 Y2(I)=Y2(I)-Y1(I)
IF(ISMOTH.NE.1) GO TO 39
DO 36 I=1,NS
IM=NT-I+1
CMULT=0.S*(1.0-COS( (I-1)*CA))
Y1( IM)=CMULT*Y1( IM)
Y2 (IM)=CMULT*Y2 ( IM)
F2 (IM)=CMULT*F2 (IM)

36 CONTINUE

4' .- - - .- 
...- -. - . - - - .



175

39 DO 18 I=1,NT
C
C CALCULATE THE FFT'p C

Y1FT( I)=CMPLX(Y1(I) ,0.O)*TT
Y2FT(I)=CMPLX(Y2( I) ,0.0)*TT
F2FT(I)=CMPLX(F2(I) ,O.0)*TT

*18 CONTINUE
CALL FFT1(Y1FT,M,NT,-1.0)
CALL FFT1(Y2FT,M,NT,-1.0)

* CALL EFTI(E2FT,M,NT,-1.0)
C
C FIND MODULI OF Y1FT,Y2ET
C

NB=NW+NWA
DO 20 I=NWA,NB
Yl(I)=CABS(YlFT(I))
Y2(I)=CABS(Y2FT(I))

K C 20WW=(I-1)*DW
C 2 WRITE(13,17)WW,Yl(I),Y2(I)

rl 20 CONTINUE
IF(IORDER.EQ.2) GO TO 122
GO TO 123

C
C CHANGE THE ORDER OF INITIAL VALUES
C5 122 NID=4

* C(1)=C(1)
C (2) =C (2)
C (3) =C (4)
C (4) =C (5)
DC (1) =DC (1)

* DC(2)=DC(2)
DC (3) =DC (4)
DC(4)=DC(5)
DO 133 I=1,NID
CT (I )=C (I)

133 CONTINUE
C
C IDENTIFICATION START
C

123 DO 99 INDEX=1,NCY
ICOUNT=1
DO 98 IDX=1,NID
CC(IDX)=C(IDX)

105 DO 97 IX=1,NCUV
* CT(IDX)=C(IDX)-(4-IX)*DC(IDX)

IF(IX.EQ.1) CTI=CT(IDX)
DO 96 IW=1,NW

C
C COMPUTE COEFFICIENTS
C
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IF(IORDER.EQ.2)GO TO 200
B1=CMPLX(1.O,W( IW)*CT(3))
B2=CMPLX(l.O,W( IW)*CT(6))

I B11=(W(IW))**2*MC*B1
B22=(W( 1W) )**2*M2*B2

A(1,2)=-(W(IW))**2*M2*Bl
A(2,1)=-B22
A(2,2)=CMPLX(CT(4)-REAL(B22) ,CT(5)*W(IW)-AIMAG(B22))

- CALL MATINV(A,2,AINV)
B(1, 1)=B1
B(1,2)=B1
B(2,1)=CMPLX(0.O 0.0)
B (2,2) =B2
CALL MULTI(AINV,2,2,B,NCOL,H)

*1< GO TO 205
C
C CALCULATION FOR SECOND ORDER
C

200 AA(1,1)=CMPLX(CT(l).-MC*(W(IW))**2,CT(2)*W(IW))
AA(2,2)=CMPLX(CT(3)-M2*(W(IW))**2,CT(4)*W(IW))
AA(1,2)=CMPLX(-M2*(W(IW))**2,O.O)
AA (2,1) =AA (1,2)
BB(1, 1)=CMPLX(1.0,O.O)
BB(1,2)=CMPLX(1.O, 0.0O)
BB(2, 1)=CMPLX(0.0,O.0)
BB(2,2)=CMPLX(1.O, 0.0)-S CALL MATINV(AA,2,AAIN)
CALL MtJLTI(AAIN,2,2,BB,NCOL,H)

*205 H12=H(1,2)
H22=H(2,2)
Y1T( IW)=CABS(H12*F2FT(NWA+IW-1))
Y2T( IW)=CABS(H22*F2FT(NWA+IW-1))
Y11(IW)=Y1(NWA+IW-1)
Y22(IW)=Y2(NWA+IW-1)

C
C CALCULATE THE ERROR TERM
C

EPS1( IW)=Y11( IW)-Y1T( 1W)
- -~ EPS2( IW)=Y22( IW)-Y2T( 1W)

96 CONTINUE
E2( IX)=O.0

C
C SUMMATION OF ERROR
C 94

DO 121 I=1,NW
121 E2(IX)=E2(IX)+EPS1(I)**2+EPS2(I)**2

C WRITE(6,12) CT(IDX),E2(IX)
97 CONTINUE

*C WRITE(6,25)
C
C FIT THE E2(IX) IN A POLYNOMIAL EQUATION BY
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C USING THE L"EAST SQUARE METHODAND THEN FIND
C THE CORRESPONDING FREQUENCY WHERE THE CURVE
C HAS A MINIMUM
C

CALL FIT1(E2,3,NCUV,CTI,DC(IDX),COE)
C
C CHECK THE CUVATURE
C

103 CT(IDX)=-COE(2)/(2.0*COE(3))
C( IDX)=CT( IDX)
CCOUNT( ICOUNT)=CT( IDX)
ICOUNT=iCOUNT+1

98 CONTINUE
C ERR0R(INDEX)=E2(NCUV)
C ACU=ABS(ERROR(INDEX-1)-ERROR(INDEX) )/ERROR(INDEX)
C IF(ACtJ.LT.1.OE-3) GO TO 100

DO 191 I=1..NID
RATIO=ABS(CCOUNT( I)-CC(I) )/CC( I)
IE(RATIO.LE.ACUR) GO 1-- 191
GO TO 95

i9.. CONTINUE
GO TO 100

95 WRITE(6,19)(C(I),I=1,NID)
99 CONTINUE
100 WRITE(6,*)(C(I),I=1,NID)

GO TO 87
12 FORMAT(2E12.4)
16 FORMAT(E12.4)
17 FORMAT(3E12.4)
19 FORMAT(6E12.4)
23 FORMAT(4E22.4)
25 FORMAT(/)
87 STOP

END
C
C MATRIX MULTIPLICATION
C

SUBROUTINE MULTI(TA,N,M,TB,L,TC)
COMPLEX TA(N,M),TB(M,L),TC(N,L)
DO 15 I=1,N
DO 15 J=1,L
TC( I,J)O. 0
DO 15 K=1,M

15 TC( I,J)=TC( I,J)+TA( I,K)*TB(K,J)
RETURN
END

C
C
C
C *PROGRAM "MDFID"*
C ********************

C A COMPUTER PROGRAM FOR THE ANALYSIS CF H
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C LINEAR RESPONSE OF HIGH ORDER MDF SYSTEMC
C M*M =HIGHEST DERIVATIVES
C NT =NUMBER OF POINTS ANALYZED
C DT --TIME STEP
C A(J,K,L)=(AJ)

j~C XO(J,K)=JTH DERIVATIVES OF STATE VECTOR AT TIME T
C DX(JIC)=DELTA OF JTH DERIVATIVES

SC XN(J,K)=JTH DERIVATIVES OF STATE VECTOR AT TIME T+DT
C F(J,K) =JTH FORCE AT TIME K

DIMENSION A(4,2,2),XO(4,2),DX(4,2),XN(4,2),CA(2,2)
2; DIMENSION CB(2,2),F(2,1024),DM(2,2),AMI(2,2),FT(5)

DIMENSION DV(2),DU(2),DW(2),DN(2,2),DR(2),FF(1024)
A DIMENSION FK(5),DD(4,2),DE(4,2),DF(2) ,FD(1024)
* DIMENSION ENED1(1024),ENED2(1024),FDD(2,1024)

CALL OPSYS('ALLOC','RH1',1O)

v~. C CALL OPSYS('ALLOC','MDF2',16)

*C SPECIFY DATA(AJ)=A(J,K,L)
C

A(1,1,1)=29.07
A 1, 1,2) =0. .0

A(1,2,l)=0.O
A1, 2,2)=32 .3

A(2,1,1)=2.11
A (2,1,2) =0.0
A(2,2,1)=0.O

j A(2,2,2)=1.89
A(3,1,1)=1.0+1.0
A(3,1,2)=1.0
A(3,2,1)=1.0
A(3,2,2)=1.0
A(4,1, 1)=0.0082*A(3, 1,1)
A(4,1,2)=0.0082*A(3, 1,2)
A(4,2,1)=0.0048*A(3,2,1)
A(4,2,2)=0.0048*A(3,2,2)

C
C M-=4 MEANS THIRD-ORDER; NM3 MEANS SECOND-ORDER
C

M-4
MMM- 1

% ,.'DTO-.05

NT-1024
ENED1(1)0O.O
ENED2(1)=0.O
AM1=1.0
AM2=1.0
DO 14 I=1,M
DO 14 J=1,2
XO(I,J)=O.O



179

14 CONTINUE a

C
C READ THE INPUT

18 FORMAT(2El2.4)

DO 20 1=1,NT

20 CONTINUE
IF(M.NE.4) GO TO 91
DO 93 11I,NT
EDD(1, I)FED(I)*A(4,1,2)
FDD(2,I)=FD(I)*A(4,2,2)

93CONTINUE
C

C FIND A(M) AND ITS INVERSE

C
91 DO 121 1=1, 2

DO 121 J=1,2
121 DM(I,J)inA(M,IJ)

CALL MATINV(DM,2,AMI)
:2 C

C FACTOR COM4PUTATION
C

FT(M)=1 .0I DO 131 3-2,N
JJ-N+1-J

131 FT(Jj)FrT(JJ+1)*FLOAT(J)
C
C CALCULATE TEE CONSTANT VALUES OF EQ 13
C

DO 141 K=1,2
DO 141 L=1,2

141 CA(K,L)inO.O
DO 151 J=1,M
AC=-(DT**(M-J) )/FT(J)
DO 150 K=1,2
DO 150 L-1,2

10CA( K, L )CA( K,L) .AC*A( J,K, L)
llCONTINUE
DO 161 K=1,2

16 O 161 L--1,2
11DM(K,L)=CA(K,L)
CALL MULT(ANI,DM,CA,2)

11DO 171 K-1,2
11CA(K,K)=CA(K,K)+1.O .0%

CALL MATINV(CA,2,D4)
CALL MULT(DM,AMI,CA,2)

C
C FACTOR COMPUTATION
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FK 1)=1.0
DO 173 J-2,5

173 CONTINUE

C START THE COMPUTATION LOOP

WRITE(16,26)T,XO(1, 1) ,XO(1,2)
DO 999 INDEX=-2,NT

T-(INDEX-1)*DT

C SOLVE EQ 13 DIFRNEOFMHEIVTES
C (CALCULATE THEDIFRNEOFMHEIVTES
C

DO 181 J=1,2
181 DW(J)=O.O

DO 191 J1, M!
LIM-M-J
DO 183 L=1,2

183 DV(L)0O.O
DO 185 K1,LIM

JK-J+KIiDO 184 L=1,2
184 DV(L)=DV(L).AC*XO(JK,L)
185 CONTINUEI DO 186 K=1,2

DO 186 L=1,2
186 DN(K,L)=A(J,K,L)

CALL MULV(DN,DVDU,2)
DO 187 I=1,2

187 DW(I)=DU(I)+DW(I)
191 CONTINUE
* DO 201 1=1,2

201 DF(I)=F(I,INDEX)-F(I,INDEX-1)+
*(FDD(I,INDEX)-FDD(I,INDEX-1))
DO 211 1=1l,2

211 DV(I)wDF(I)-DW(I)
CALL MULV(CA,DV,DW,2)
DO 221 I=1,2

221 DX(M,I)=DW(I)
C
C SOLVE EQ 7
C (CALCULATE THE DIFFERENCES OF JTH DERIVATIVES)
C

0O 261 J=1,MM
DO 230 I=1,2

230 DV(I)=O.O
LIM=M-J

* Do 231 11l,LIX
- AC=(DT**K)/(rK(K+1))
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JK=J+K
DO 228 L-1,2

228 DV(L)=DV(L)+AC*XO(JK,L)
231 CONTINUE

Ac=(DT**(M-.J) )/FT(J)
DO 241 I=1,2

241 DX(J, I )DV( I) +AC*DX(M, I)
261 CONTINUE

C SOLVE EQ 14(SOLUTIONS)
C

DO 271 JU1l,MM
29DO 269 L--1,2

271 XN(J,L)=XO(J,L)+DX(J,L)
21CONTINUE

C
C SOLVE EQ 16
C (CALCULATE THE HIGHEST DERIVATIVES)
C

DO 281 I11,2
281 DW(I)=O.o

DO 291 J=1,MM
DO 285 K=1,2
DV(K)=XN(J, K)
DO 285 L-1,2

285 DM(K,L)-A(J,K,L)
CALL MULV(DN,DV,DU,2)
DO 286 K=1l,2

286 DW(K)=DU(K).DW(K)
291 CONTINUE

DO 301 K=1,2
301 DW(K)=r(K, INDEX)+FDD(K, INDEX)-DW(K)

CALL MULV(AIII,DW,DV,2)
DO 311 K=1,2

C311 XN(N,K)=DV(K)
CI~IC WRITE(6,*)XN(M,1),XN(M,2)

C

XRE=XN(1,2)-XN(l,l)
WRITE(16,26)T,XN(l, 1),XN(1,2)
VEL1=XN(2,1)
VEL2inXN(2,2)-XON(2, 1)
REACC=XN(3,2)-XN(3, 1)

C
C STORE VALUES AND SET XO EQUAL TO XN
C

ENED1(INDEX)=XGJ(2,1)*(F(2, INDEX)-
+2.0*AM1*XN(3,1)-AM2*XJ(3,2))
E NED 2(INDEX)=XN(2,2)*(F(2, INDEX)-
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*AM1*XQN(31)-AM2*XN(3,2))
DO 321 J1-,M
DO 321 K=-1,2

321 XO(JK)=X(J,K)

CALL SIMP(ENED1,ENER1,DT,NT)
CALL SIMP(ENED2,ENER2,DTNT)
ENER=ENERI+ENER2
WRITE(6,26) ENER1,ENER2,ENER

22 FORMAT(2E2.4)
26 FORMAT(3E12.4)

STOP

C
C COMPUTE THE AREA UNDER THE CURVE
C

SUBROUTINE SIMP(X,ED,N)
DIMENSION X(1024)
N2=N/2-1
E=X( 1)
DO 1 1=1,N2
IA-2*I
IB31A+l
E=E.4.0*X(IA)
E=E2.0*X(IB)

1 CONTINUE
N3=N-1
E=E+O.5*X(N3)+1.5*X(N)
E:D*E/3.0

C END

C

SUBROUTINE MULT(A,BC,N)
DIMENSION A(NN),B(N,N),C(N,N)
DO 1 1=1,N
DO 1 J=1,N
C(I,J)0O.O
DO 1 K=1,N
C(I,J)=C(I,J).A(I,K)*B(K,J)

1 CONTINUE
RETURN
END

C
C

SUBROUTINE MULV(A,BC,N)
DIMENSION A(NN),B(N),C(N)
DO 1 1-n1 N
C(I)=O .0
DO 1 J1,N
C(I)inC(I)+A(I,J)*B(J)
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1 CONTINUE

END

SUBROUTINE NATINV(C,ND)
C MATRIX INVERSION C-INPUT D-OUTPUT

DIMENSION C(N,N),D(N,N)
DO 10 J1-, N
DO 10 K-=1, N

op 10 D(J)in.0
DO 11 K1-,N

P1=1.0
DO 55 I=1,N

L P2=C(I,I)
DO 40 J=1lN
C(I,J)=C(I,J)/P2

40 D(I,J)=D(I,J)/P2
DO 51 IC1-,N
P3=-C(IC,I)
DO SO KIC=1,N
IF(IC-1)21,Sl,21

21 C(IC,K)=C(I,K)*P3+C(IC,K)
50 D(IC,JC)=D(IK)*P3+D(IC,C)
51 CONTINUE

Pl1P2*Pl
IV( (I+2)-N)55,53,55'I53 DET=Pl*((C(I+1,141)*C(1+2,1+2))-

+(C(I.2,1.1)*C(I+1, 1.2)))

55 CONTINUE
DO 70 IT1-,N
DO 70 IS=1,N

70 C(ITIS)=D(IT,IS)
RETURN

MID
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g C
C SELECTED SUBROUTINES*
C
C

SUBROUTINE SPCOEF(N, XN, FN, S.INDEX)
DIMENSION XN(N), FN(N),S(N), INDEX(N)
DIMENSION RHO( 1024) ,TAU( 1024)
NN1=N- 1

C
C ARRANGE THE NODES XN IN INCREAS ING ORDER.
C STORE THE ORDER IN THE ARRAY INDEX.
C

DO 1 I=1,N
1 INDEX(I)inI

DO 3 I=1,NM1
IP1=I+1
DO 2 J=IP1,N
II=INDEX( I)
IJ=-INDEX( J)
IF(XN(II).LE.XN(IJ))GO TO 2

i ITENP=INDEX( I)
INDEX( I)=INDEX(J)
INDEX(J)=ITEMP

2 CONTINUE
3 CONTINUE

NM2=N-2
C

IC CALCULATE THE ELEMENTS OF THE ARRAYS RHO AND TAU.
C

RHO( 2) =0.0
TAU(2)=0.O
DO 4 =2,N1
IIM1=INDEX( I-1)
IIUINDEX( I)
IlP1=INDEX( 1+1)
HINM1XN(II )-XN(I1111)
KI=XN(IIPl)-XN(II)
TEMP=(HIN1/HI)*(RHO(I).2.0).2.0
RHO I+ 1)=-1.0/TEMP
Din6.0*( (FN(IIPl)-FN(Il) )/HI-
*(FN(II)-FN(IIM1) )/HIM1)/HI

4 TAU(I+1)=(D-HIN1*TAU(I)/HI)/TEMP
C
C COMPUTE ARRAY OF SECOND DERIVATIVES S FOR
C THE NATURAL SPLINE
C

S(N)-O .0
1z" Do S Iin1,NM2

IB-N-I
S S(IB)=RH(IB+1)*S(1B.1)+TAU(IB+l)

RETURN
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END
FUNCTION SPLINE(N.XQI.FNS. INDEXX)
DIMENSION XN(N), FN(N), 5(N), INDEX(N)

C
C IF X.LT.OI(INDEX(1)), APPROXIMATE FUNCTION BY
C THE STRAIGHT LINE WHICH PASSES THROUGH THE POINT
C (XN(INDEX(1)),FN(INDEX(l)))A4D WHOSE
C SLOPE AGREES WITH THE SPLINE AT THAT POINT
C

ll=INDEX(1)
IF(X.GE.XN(I1))GO TO 1
12=INDEX(2)

SPLINE=FN(Il)+(X-XN(Il) )'((FN(12)-FN(Il))
+/Hl-H1'S(2)/6.0)
RETURN

C
C IF X.GE.XN(INDEX(N)), APPROXIMATE FUNCTION BY
C THE STRAIGHT LINE WHICH PASSES THROUGH THE POINT
C (XN(INDEX(N)),FN(INDE.X(N))) AND WHOSE SLOPE AGREES
C WITH THE SLOP OF THE SPLINE AT THAT POINT.
C

1 IN=-INDEX(N)
IF(X.LE.XN(IN))GO TO 2.
INM1=INDEX(N-1)
mMffl=1( IN)-XN( INM1)
SPLINE=FN( IN)+(X-XN( IN) )*( (FN(IN)-FN(INM1))

RETURI4NMS(-)6O
C
C FOR XN(INDEX(1)).LE.X.LE.mN(INDEX(N)) CALCULATE
C SPLINE FIT.
C
2 DO 3 =2,N

II=INDEX( I)
IF(X.LE.XN(II))GO TO 4

3 CONTINUE
4 L=I-1

ILaINDEX( L)
ILP1=INDE(L+l)

* 3XXN( IL)X
HLDIX( IP)(IL)
HrX(LI)X(L

SPLINE=A*S(L)*(A**2/BL-HL)/6.0+B*S(L+1)*
b +(B**2/HL-HL)/6.0-(A*FN(IL).B*FN(ILPl))/HL

RETURN r

END
C T RGA

C MPRGA
CIC
C MULTIPLIED BY T WHEN USING THE FORWARD FIT

le
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C DIVIDED BY DT FOR BACKWARD FFT
C SIGN u-1. FOR DET, SIGN1.l FOR IDYT
C

SUBROUTINE FFT1(AN,NB, SIGN)
COMPLEX A(NE) ,U,W,T

C

C

DO 1 J1-,NB
1 A(J)=A(J)/NB

C
C REORDER SEQUENCE

b C

NBD2=NB/2
NBM1=NB- 1
J=1l
DO 4 L1-,NBM1
IF(L.GE.J) GO TO 2
TA (3)L ~A (J) =A (L)
A(L)-T

2 K-NBD2
3 IF(K.GE.J) GO TO 4

J=J-K
#KK/2
GO TO 3I4 J-J4K

C CALCULATE EFT
C

P=3 . 141592653589793
DO 6 M1-,N
=1. 0, 0. 0)

ME=2**M
K-ME/2
W=CMPLX(COS(PI/K), SIGN*SIN(PI/K))
DO 6 J=1l,K

ti: DO 5 L=J,NB,ME
LPK-L+K
T=A(LPK)*U
A(LPK)=A(L)-T

5 A(L)=A(L)+T
6 U=U*W

RETURN
END

C

C SUBROUTINE SIMP(QFAB,ACCANS,ERROR,AREA, IFLAG)

C simp Is AN ADAPTIVE, ITERATIVE CODE BASED
C ON SIMPSON'S RULE. IT IS DESIGNED TO EVALUATE THE
C DEFINITE INTEGRAL OF A CONTINUOUS FUNCTION WITH
C FINITE LIMITS OF INTEGRATION.
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C F - NAME OF FUNCTION WHOSE INTEGRAL IS DESIRED.
C TEE FUNCTION NAME F MUST APPEAR IN AN EXTERNAL
C STATEMENT IN THE CALLING PROGRAM.
C AB - LOWER AND UPPER LIMITS OF INTEGRATION.
C ANS- APPROXIMATE VALUE OF THE INTEGRAL OF F(X)
C FROM A TO B.
C AREA - APPROXIMATE VALUE OF THE INTEGRAL OF
C ABS(F(X)) FROM A TO B.
C ERROR - ESTIMATED ERROR OF ANS. USER MAY WISH
C TO EXTRAPOLATE BY FORMING ANS+ERROR TO GET WHAT IS
C OFTEN A MORE ACCURATE RESULT, BUT NOT ALWAYS.
C ACC - DESIRED ACCURACY OF ANS. CODE TRIES TO MAKE
C ABS(ERROR).LE.ACC*ABS(AREA).
C I FLAG = 1 FOR NORMAL RETURN.
C = 2 IF IT IS NECESSARY TO GO TO 30 LEVELS OR
C USE A SUBINTERVAL TOO SMALL FOR MACHINE WORDF C LENGTH. ERROR MAY BE UNRELIABLE IN THIS CASE.
C = 3 IF MORE THAT 2000 FUNCTION EVALUATIONS
C ARE USED. ROUGH APPROXIMATIONS ARE USED TO
C COMPLETE THE COMPUTATIONS AND ERROR IS
C USUALLY UNRELIABLE.
C

DIMENSION FV(5),LORR(30),F1T(30),F2T(30),F3T(30)
DIMENSION ARESTT(30),ESTT(30),EPST(30),PSUM(30)
DIMNMION DAT(30)

C
C SET U TO APPROXIMATELY THE UNIT ROUND-OFF OF
C SPECIFIC MACHINE (HERE IBM 360/67)
C

U = 9.OE-7
C
C INITIALIZE
C

FOURU=4.0*U
IFLAG=1
EPS=ACC
ERROR=O .0
LVL=I
LORR(LVL)=1
PSUM(LVL)=O.0
ALPHA=A
DA=B-A" AREA=O. 0
AREST-O.O
F(1)=QF() .HA

fm, FV(3 )=QF(ALPHA+O.5*DA)
FV(5)-QF(ALPHA+DA)
KOUNT=3
WT-DI /6.0
ESTf :*(FV(1)+4.0*FV(3)+FV(5))C

r ,. ,j , t.*. .,.4 % ".; -" ' ' , N".C *'r .' " ,"'' '.. ; - ;. ..m .* -.-.v ' . . .:-..--... ....'. "
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C 'BASIC STEP'. HAVE ESTIMATE EST OF INTEGRAL
C ON (ALPHA, ALPHA+DA). B ISECT AND COMPUTE
C ESTIMATES ON LEFT AND RIGHT HALF INTERVALS.
C SIMILARLY TREAT INTEGRAL OF ABS(F(I)). SUM IS
C BETTER VALUE FOR INTEGRAL AND DIFF/15.o is
C APPROXIMATELY ITS ERROR.
C

1 DX=-O.5*DA
FV(2 )=QF(ALPHA.O. 5*DX)
FV(4)=QF(ALPHA+1. 5*DX)
KOUNT=KOUNT.2
WT=DX/6.0
ESTL-W*(FV(1)e4.O*FV(2)+FV(3))
ESTR=-WT*(FV(3)44.0*FV(4)+FV(5))
SUM=ESTL+ESTR
ARESTL-W*(ABS(FV(1) )+ABS(4.O*FV(2) )+ABS(FV(3)))
ARESTRT-*(ABS(FV(3))+ABS(4.0*1(4))+ABS(FV(S)))

ARE--AEA+(ARESTL+ARESTR) -AREST)

C
C IF ERROR IS ACCEPTABLE, GO TO 2. IF INTERVAL
C IS TOO SMALL OR TOO MANY LEVELS OR TOO MANY
C FUNCTION EVALUATIONS, SET A FLAG
C AND GO TO 2 ANYWAY.
C

IF(ABS(DIFF).LE.EPS*ABS(AREA))GO TO 2
IF(ABS(DX) .LE.FOURU*ABS(ALPHA) )GO TO 5k IF(LVL.GE.30)GO TO 5
IF(KOUNT.GE.2000)GO TO 6

C
C HERE TO RAISE LEVEL. STORE INFORMATION TO
C PROCESS RIGHT HALF INTERVAL LATER. INITIALIZE FOR
C 'BASIC STEP' SO AS TO TREAT LEFT HALF INTERVAL.
C

LVL=LVL+ 1
LORR( LVL)0O
F1T(LVL)=FV(3)
F2T(LVL)=FV(4)
F3T(LVL)=FV(5)
DA=DX
DAT(LVL)=DX
AREST-ARESTL
ARE STT (LVL )=ARESTR
EST=ESTL
ESTT(LVL)=ESTR
EPS=EPS/1 .4
EPST (LVL )=EPS
FV(5) =FV( 3)
EV(3)=FV(2)
GO TO 1

C
C ACCEPT APPROXIMATE INTEGRAL SUM. IF IT WAS ON
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C A LEFT INTERVAL GO TO 'MOVE RIGHT'. IF A RIGHT
C INTERVAL, ADD RESULTS TO FINISH AT THIS LEVEL.
C ARRAY LORR (MNEMONI" FOR LEFT OR RIGHT TELLS
C WHETHER LEFT OR RIGHT INTERVAL AT EACH LEVEL.
C
2 ERROR=ERROR+D IFF/15.0
3 IF(LORR(LVL).EQ.O)GO TO 4

SUM=PSUM ( LVL) +SUM
LVL=LVL- 1
IF(LVL.GT.1)GO TO 3
ANS=SUM
RETURN

C
C 'MOVE RIGHT'. RESTORE SAVED INFORMATION TOL C PROCESS RIGHT HALF INTERVAL.
C 4 PSUM(LVL)=SUM

LORR(LVL)=1
ALPHA=ALPHA+DA
DA=DAT(LVL)
FV(1)=FIT(LVL)
FV(3)=F2T(LVL)
FV(5)=F3T(LVL)
AREST=ARESTT ( LVL)
EST=ESTT (LVL)
EPS=EPST( LVL)
GO TO 1p C

C ACCEPT 'POOR' VALUE. SET APPROPRIATE FLAGS.
P., C

5 IFLAG=2
GO TO 2

6 IFLAG=3
GO TO 2
END

C
C

SUBROUTINE SPCOEF(N,XN, FN, S, INDEX)
DIMENSION XN(N),FN(N), S(N), INDEX(N)
DIMENSION RHO(1024), TAU(1024)
NM1=N-1

C
C ARRANGE THE NODES XN IN INCREASING ORDER.
C STORE THE ORDER IN THE ARRAY INDEX.
C

DO 1 I=1,N
1 INDEX(I)=I

DO 3 I=1,NM1" IPI=I+I

DO 2 J=IPI,N
II=INDEX(I)
IJ=INDEX(J)
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V IF(XN(II).LE.XN(IJ))GO TO 2
ITEMP=INDEX(I)
INDEX( I )INDEX(J)
INDEX(J)=ITEMP

2 CONTINUE

F-, NM2=N-2

C CALCULATE THE ELEMENTS OF THE ARRAYS
C RHO AND TAU.
C

RHO (2 )=0.0
TAU (2) =0.0
DO 4 I=2,NM1
IIM1=INDEX( I-i)
I I=INDEX( I)
IIPI=INDEX( 1+1)
HIMl1xN(riI)-xN(iim1)
HI=XN(IIP1)-XN(II)
TEP=(HIMl/HI)*(RHO( I)+2.O)+2.O
RHO (I+ 1)= 1.0/TEMP

.-(FN(II)-FN(IIM1) )/HIM1)/HI

4 TAU(I+1)=(D-HIMl*TAU(I)/HI)/TEMP

W THE NATURAL SPLINE.

5(1) =0.0
S (N) =0.0
Do 5 r=i,NM2
I B=N- I

5 S(IB)=RHO(IB+1)*S(IB+1)4TAU(IB1I)
RETURN 4.

END
FUNCTION SPLINE(N,XN,FN,S, INDEX,X)

DIMENSION XN(N),FN(N) ,S(N), INDEX(N)
C I .TX(NE(),APOIAEFNTO
C BY .THE STRIGHT ) LIEAHIPIASE THRCONH

C7 POINH S AGT LI(ND X 1 ,NE(WICH X( )) ANDSE WHO G H ESL P

C GESWIHTESLOPE OF THE SPLINE AT THAT POINT.

ka IF(X.GE.XN(I1))GO TO 1
12=INDEX( 2)
Hl1XN(12)-XN(Il)
SPLINE=FN(I1)+(X-XN(Il) )*( (FN(I2)-FN(I1))

RETURN
C
C IF X.GE.XN(INDEX(N)), APPROXIMATE FUNCTION BY
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C THE STRAIGHT LINE WHICH PASSES THROUGH THE POINT
C (XN(INDEX(N)),FN(INDEX(N))) AND WHOSE SLOPE .

C AGREES WITH THE SLOPE OF THE SPLINE AT THAT POINT.p C
1 IN=-INDEX(N)

IF(X.LE.XN(IN))GO TO 2
INM1=INDEX( N-i)
HNMi=XN( IN) -XN( 1N11)
SPLINE=FN( IN)+(X-XN( IN) )*( (FN(IN)-FN(INM1) )/HNM1

++mIMl*S (N-i) /6.0)
RETURN

C
C FOR XN(INDEX(l)).LE.X.LE.XN(INDEX(N))

LC CALCULATE SPLINE FIT.
C
2 DO 3 2,N

II=INDEX( I)I!;' IF(X.LE.XN(II))GO TO 4
3 CONTINUE
4 L=-I-1

I L= INDEX (L)
ILP1=INDEX(L+l)
A=XN( ILP1)-X
B=X-XN( IL)
HL=XN(ILP1)-XN(IL)
SPLINE=A*S(L)*(A**2/HL-HL)/6.O.B*S(L+1)*(B**2/HL-HL)

*/6.0-(A*FN(IL)+B*FN( ILPi) )/HLI RETURN
END

C.
C THIS SUBROUTINE IS FOR N*N MATRIX INVERSION
C

SUBROUTINE INVERS (B, N,A)
C

DOUBLE PRECISION A(2,2),B(2,2),C(2,2)
DOUBLE PRECISION AMAX,TEMP,PIVOT

r DIMENSION INDEX(4,2)
t. IF(N.GT.40) GO TO 134

DO 90 I=1,N
DO 90 J=1,N

90A(I,J)=B(I,J)

D0 ON107NUE
DO 107 J=1,N

107 10 BI JA(,J
DO7 108 11A(,N

R.108 INDEX(I,1)0O

109 AMAX-1.ODO
DO 110 1=1,N
IF(INDEX(I,1)) 110,111,110

111 DO 112 J=1,N
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IF(INDEX(J, 1)) 112,113,112
113 TENP=DABS(A(I,J))

IF(TEMP-AMAX) 112,112,114
114 IROW=-I

ICOL~J
AMAX-TEMPJ

112 CONTINUE
110 CONTINUE

IF(AMAX) 225,115,116
116 INDEX(ICOL,1)=IROW.

p. IF(IROW-ICOL) 119,118,119
119 DO 120 J=1,N

TEMP=A(IROW,J)
A(IROW,J)=A(ICOL,J)

U120 A(ICOLJ)=-TEMP
11=II+1
INDEX(II,2)=ICOL

118 PIVOT-A( ICOL, ICOL)
A(ICOL, ICOL)1l.ODO
PIVOT1-. ODO/PIVOT
DO 121 J=1,N

121 A(ICOL,J)=A(ICOL,J)*PIVOT
DO 122 I=1,N
IF(I-ICOL) 123,122,123

123 TEMP=A(I,ICOL)
A( I, ICOL)0O.ODO
DO 124 J=1,N

S124 A(I,J)=A(IJ)-A(ICOL,J)*TEMP
122 CONTINUE

GO TO 109
125 ICOL=-INDEX(II,2)

IROW=-INDEX( ICOL, 1)
DO 126 1=1,N
TEMP=A( I, IROW)
A(I,IROW)=A(I,ICOL)

126 A(I,ICOL)-TENP

225 IF(II) 125,127,125
127 DO 130 1=1,N

DO 130 J=1,N
F! C (I ,J)=0. ODO

DO 130 K=1l,N
130 C(I,J)=-c(I,J).B(I,K)*A(K,J)

GO TO 134
hi115 WRITE(6,133)

133 FORMAT(' ZERO PIVOT')
V134 RETURN

END
C
C

C LEAST SQUARE POLYNOMINAL FITTING

[~. ..
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C Y :INPUT
C MP :DEGREE OF POLYNOMINAL,
C N :NUMBER OF POINT FOR THE FITTING
C XI THE LOW X-AXIS VALUE
C X2 THE UPPER X-AXIS VALUE
C A(l): THE COEFFICIENT OF THE POLYNOMINAL
C A(l): THE CONSTANT COEFFICIENT
C

SUBROUTINE FITI(Y,MP,N,Xl,X2,A)
DIMENSION X0(20,3),Y(20),X(20),XP(3,3),A(3)
DIMENSION EPS(20),D(3,3),B(3)
DX-(X2-X1 )/FLOAT(N-1)
DO 10 1=1,N

10 X(I)=X14.FLOAT(1-1)*DX
DO 1 I=1,N
XX(I,1)=1.0
DO 1 J=2,MPF1 XX(I,J)=X(I)**(J-1)
DO 2 I=1,MP
DO 2 J=I,MP
XP (I ,J )=0.0
DO 2 K1I,N

2 XP(I,J)=XP(I,J)+XX(K,I)*XX((,J)
DO 3 1=2,M4P
IN=-I-1
DO 3 J=1,IN

3 XP(I,J)=XP(J,I)U CALL MATINV(XP,NP,D)
DO 4 I=1,MP
B (I) =0.0E DO 4 J1-,N

4 B(I)=B(I)+XX(J,I)*Y(J)
DO 5 1=1M 1P
A( I) =0.0
DO 5 J=1,MP

S A(I)=A(I)+D(I,J)*B(J)
RETURN

Li END
C
C MATRIX INVERSION kF; C

SUBROUTINE MATINV(C,N,D)
C MATRIX INVERSION C-INPUT D-OUTPUT

DIMENSION C(NN),D(N,N)
DO 10 J=1,N
DO 10 K=1,N

10 D(JK)=O.0
DO 11 K1-,N

11 D(K,K)-l.0
P1=1.0
DO 55 I=1N

P2=C(I, I)7

2k
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DO 40 J-1, N
C(1, J )=C( I, J)/P2

40 D(I,J)=D(I,J)/PZ
Do 51 IC=1,N
P3=-C( IC, I)
DO 50 K=l,N
IF(IC-I)21,51,21

21 C(ICK)=C(I,K)P3+C(ICIC)
50 D(IC,K)=D(I,K)*P3+D(IC,K)
51 CONTINUE

Pl1P2*Pl
IE( (I+2)-N)55,53,55

53 DET=-Pl*((C(I+1,I+1)*C(I+2,I+2))-
+(C(I142, I.1)*C(I+1, 1.2)))

DO 70 IT-1,N
DO 70 1S=1,N

70 C(IT,IS)=D(IT,IS)
RETURN

EDD

U-




